PersonalCorpus 版 (精华区)

发信人: feiniaoml (少白石㊣迈向顶峰), 信区: Hardware
标  题: 常见硬件术语手册
发信站: 哈工大紫丁香 (2004年02月27日07:58:51 星期五), 站内信件

一、CPU术语解释
   
    3DNow!: (3D no waiting)AMD公司开发的SIMD指令集,可以增强浮点和多媒体运
算的速度,它的指令数为21条。
   
    ALU: (Arithmetic Logic Unit,算术逻辑单元)在处理器之中用于计算的那一部
分,与其同级的有数据传输单元和分支单元。
   
    BGA:(Ball Grid Array,球状矩阵排列)一种芯片封装形式,例:82443BX。
   
    BHT: (branch prediction table,分支预测表)处理器用于决定分支行动方向的
数值表。
   
    BPU:(Branch Processing Unit,分支处理单元)CPU中用来做分支处理的那一个
区域。
   
    Brach Pediction: (分支预测)从P5时代开始的一种先进的数据处理方法,由C
PU来判断程序分支的进行方向,能够更快运算速度。
   
    CMOS: (Complementary Metal Oxide Semiconductor,互补金属氧化物半导体
)它是一类特殊的芯片,最常见的用途是主板的BIOS(Basic Input/Output System,基
本输入/输出系统)。
   
    CISC: (Complex Instruction Set Computing,复杂指令集计算机)相对于RISC
而言,它的指令位数较长,所以称为复杂指令。如:x86指令长度为87位。
   
    COB: (Cache on board,板上集成缓存)在处理器卡上集成的缓存,通常指的是
二级缓存,例:奔腾II 
   
    COD: (Cache on Die,芯片内集成缓存)在处理器芯片内部集成的缓存,通常指
的是二级缓存,例:PGA赛扬370 
   
    CPGA: (Ceramic Pin Grid Array,陶瓷针型栅格阵列)一种芯片封装形式。
   
    CPU: (Center Processing Unit,中央处理器)计算机系统的大脑,用于控制和
管理整个机器的运作,并执行计算任务。
   
    Data Forwarding: (数据前送)CPU在一个时钟周期内,把一个单元的输出值内
容拷贝到另一个单元的输入值中。
   
    Decode: (指令解码)由于X86指令的长度不一致,必须用一个单元进行“翻译
”,真正的内核按翻译后要求来工作。
   
    EC: (Embedded Controller,嵌入式控制器)在一组特定系统中,新增到固定位
置,完成一定任务的控制装置就称为嵌入式控制器。
   
    Embedded Chips: (嵌入式)一种特殊用途的CPU,通常放在非计算机系统,如:
家用电器。
   
    EPIC: (explicitly parallel instruction code,并行指令代码)英特尔的64位
芯片架构,本身不能执行x86指令,但能通过译码器来兼容旧有的x86指令,只是运算速度
比真正的32位芯片有所下降。
   
    FADD: (Floationg Point Addition,浮点加)FCPGA(Flip Chip Pin Grid 
Array,反转芯片针脚栅格阵列)一种芯片封装形式,例:奔腾III 370。
   
    FDIV: (Floationg Point Divide,浮点除)FEMMS(Fast Entry/Exit 
Multimedia State,快速进入/退出多媒体状态)  在多能奔腾之中,MMX和浮点单元是
不能同时运行的。新的芯片加快了两者之间的切换,这就是FEMMS。
   
    FFT: (fast Fourier transform,快速热欧姆转换)一种复杂的算法,可以测
试CPU的浮点能力。
   
    FID: (FID:Frequency identify,频率鉴别号码)奔腾III通过ID号来检查CPU频
率的方法,能够有效防止Remark。
   
    FIFO: (First Input First Output,先入先出队列)这是一种传统的按序执行方
法,先进入的指令先完成并引退,跟着才执行第二条指令。
   
    FLOP: (Floating Point Operations Per Second,浮点操作/秒)计算CPU浮点能
力的一个单位。
   
    FMUL: (Floationg Point Multiplication,浮点乘)
   
    FPU: (Float Point Unit,浮点运算单元)FPU是专用于浮点运算的处理器,以前
的FPU是一种单独芯片,在486之后,英特尔把FPU与集成在CPU之内。
   
    FSUB: (Floationg Point Subtraction,浮点减)
   
    HL-PBGA: (表面黏著、高耐热、轻薄型塑胶球状矩阵封装)一种芯片封装形式

   
    IA: (Intel Architecture,英特尔架构)英特尔公司开发的x86芯片结构。
   
    ID: (identify,鉴别号码)用于判断不同芯片的识别代码。
   
    IMM: (Intel Mobile Module,英特尔移动模块)英特尔开发用于笔记本电脑的
处理器模块,集成了CPU和其它控制设备。
   
    Instructions Cache: (指令缓存)由于系统主内存的速度较慢,当CPU读取指
令的时候,会导致CPU停下来等待内存传输的情况。指令缓存就是在主内存与CPU之间增加
一个快速的存储区域,即使CPU未要求到指令,主内存也会自动把指令预先送到指令缓存,
当CPU要求到指令时,可以直接从指令缓存中读出,无须再存取主内存,减少了CPU的等待
时间。
   
    Instruction Coloring: (指令分类)一种制造预测执行指令的技术,一旦预测
判断被相应的指令决定以后,处理器就会相同的指令处理同类的判断。
   
    Instruction Issue: (指令发送)它是第一个CPU管道,用于接收内存送到的指
令,并把它发到执行单元。IPC(Instructions Per Clock Cycle,指令/时钟周期)表示
在一个时钟周期用可以完成的指令数目。
   
    KNI: (Katmai New Instructions,Katmai新指令集,即SSE) Latency(潜伏期
)从字面上了解其含义是比较困难的,实际上,它表示完全执行一个指令所需的时钟周期
,潜伏期越少越好。严格来说,潜伏期包括一个指令从接收到发送的全过程。现今的大多
数x86指令都需要约5个时钟周期,但这些周期之中有部分是与其它指令交迭在一起的(并
行处理),因此CPU制造商宣传的潜伏期要比实际的时间长。
   
    LDT: (Lightning Data Transport,闪电数据传输总线)K8采用的新型数据总线
,外频在200MHz以上。
   
    MMX: (MultiMedia Extensions,多媒体扩展指令集)英特尔开发的最早期SIMD
指令集,可以增强浮点和多媒体运算的速度。
   
    MFLOPS: (Million Floationg Point/Second,每秒百万个浮点操作)计算CPU浮
点能力的一个单位,以百万条指令为基准。
   
    NI: (Non-Intel,非英特尔架构)
   
  除了英特尔之外,还有许多其它生产兼容x86体系的厂商,由于专利权的问题,它们的
产品和英特尔系不一样,但仍然能运行x86指令。
   
    OLGA: (Organic Land Grid Array,基板栅格阵列)一种芯片封装形式。
   
    OoO: (Out of Order,乱序执行)Post-RISC芯片的特性之一,能够不按照程序提
供的顺序完成计算任务,是一种加快处理器运算速度的架构。
   
    PGA: (Pin-Grid Array,引脚网格阵列)一种芯片封装形式,缺点是耗电量大

   
    Post-RISC: 一种新型的处理器架构,它的内核是RISC,而外围是CISC,结合了
两种架构的优点,拥有预测执行、处理器重命名等先进特性,如:Athlon。
   
    PSN: (Processor Serial numbers,处理器序列号)标识处理器特性的一组号码
,包括主频、生产日期、生产编号等。
   
    PIB: (Processor In a Box,盒装处理器)CPU厂商正式在市面上发售的产品,
通常要比OEM(Original Equipment Manufacturer,原始设备制造商)厂商流通到市场的
散装芯片贵,但只有PIB拥有厂商正式的保修权利。
   
    PPGA: (Plastic Pin Grid Array,塑胶针状矩阵封装)一种芯片封装形式,缺点
是耗电量大。
   
    PQFP: (Plastic Quad Flat Package,塑料方块平面封装)一种芯片封装形式。
   
    RAW: (Read after Write,写后读)这是CPU乱序执行造成的错误,即在必要条件
未成立之前,已经先写下结论,导致最终结果出错。
   
    Register Contention: (抢占寄存器)当寄存器的上一个写回任务未完成时,
另一个指令征用此寄存器时出现的冲突。
   
    Register Pressure: (寄存器不足)软件算法执行时所需的寄存器数目受到限
制。对于X86处理器来
  说,寄存器不足已经成为了它的最大特点,因此AMD才想在下一代芯片K8之中,增加寄
存器的数量。
   
    Register Renaming: (寄存器重命名)把一个指令的输出值重新定位到一个任
意的内部寄存器。在x86
  架构中,这类情况是常常出现的,如:一个fld或fxch或mov指令需要同一个目标寄存
器时,就要动用到寄存器重命名。
   
    Remark: (芯片频率重标识)芯片制造商为了方便自己的产品定级,把大部分CP
U都设置为可以自由调节倍频和外频,它在同一批CPU中选出好的定为较高的一级,性能不
足的定位较低的一级,这些都在工厂内部完成,是合法的频率定位方法。但出厂以后,经
销商把低档的CPU超频后,贴上新的标签,当成高档CPU卖的非法频率定位则称为Remark。
因为生产商有权力改变自己的产品,而经销商这样做就是侵犯版权,不要以为只有软件才
有版权,硬件也有版权呢。
   
    Resource contention: (资源冲突)当一个指令需要寄存器或管道时,它们被
其它指令所用,处理器不能即时作出回应,这就是资源冲突。
   
    Retirement: (指令引退)当处理器执行过一条指令后,自动把它从调度进程中
去掉。如果
  仅是指令完成,但仍留在调度进程中,亦不算是指令引退。
   
    RISC: (Reduced Instruction Set Computing,精简指令集计算机)一种指令长
度较短的计算机,其运行速度比CISC要快。
   
    SEC: (Single Edge Connector,单边连接器)一种处理器的模块,如:奔腾II

   
    SIMD: (Single Instruction Multiple Data,单指令多数据流)能够复制多个操
作,并把它们打包在大型寄存器的一组指令集,例:3DNow!、SSE。
   
    SiO2F: (Fluorided Silicon Oxide,二氧氟化硅)制造电子元件才需要用到的材
料。
   
    SOI: (Silicon on insulator,绝缘体硅片)SONC(System on a chip,系统集
成芯片)在一个处理器中集成多种功能,如:Cyrix MediaGX。
   
    SPEC: (System Performance Evaluation Corporation,系统性能评估测试)测
试系统总体性能的Benchmark。
   
    Speculative execution: (预测执行)一个用于执行未明指令流的区域。当分
支指令发出之后,传统处理器在未收到正确的反馈信息之前,是不能做任何工作的,而具
有预测执行能力的新型处理器,可以估计即将执行的指令,采用预先计算的方法来加快整
个处理过程。
   
    SQRT: (Square Root Calculations,平方根计算)一种复杂的运算,可以考验
CPU的浮点能力。
   
    SSE: (Streaming SIMD Extensions,单一指令多数据流扩展)英特尔开发的第二
代SIMD指令集,有70条指令,可以增强浮点和多媒体运算的速度。
   
    Superscalar: (超标量体系结构)在同一时钟周期可以执行多条指令流的处理
器架构。
   
    TCP: (Tape Carrier Package,薄膜封装)一种芯片封装形式,特点是发热小

   
    Throughput: (吞吐量)它包括两种含义:
   
      第一种:执行一条指令所需的最少时钟周期数,越少越好。执行的速度越快
,下一条指令和它抢占资源的机率也越少。
   
      第二种:在一定时间内可以执行最多指令数,当然是越大越好。
   
    TLBs: (Translate Look side Buffers,翻译旁视缓冲器)用于存储指令和输入/
输出数值的区域。
   
    VALU: (Vector Arithmetic Logic Unit,向量算术逻辑单元)在处理器中用于向
量运算的部分。
   
    VLIW: (Very Long Instruction Word,超长指令字)一种非常长的指令组合,它
把许多条指令连在一起,增加了运算的速度。
   
    VPU: (Vector Permutate Unit,向量排列单元)在处理器中用于排列数据的部
分。
   
   
  二、硬盘术语解释  
   
    硬盘的转速(Rotationl Speed): 也就是硬盘电机主轴的转速,转速是决定硬盘
内部传输率的关键因素之一,它的快慢在很大程度上影响了硬盘的速度,同时转速的快慢
也是区分硬盘档次的重要标志之一。硬盘的主轴马达带动盘片高速旋转,产生浮力使磁头
飘浮在盘片上方。要将所要存取资料的扇区带到磁头下方,转速越快,等待时间也就越短
。因此转速在很大程度上决定了硬盘的速度。目前市场上常见的硬盘转速一般有5400rpm、
7200rpm、甚至10000rpm。理论上,转速越快越好。因为较高的转速可缩短硬盘的平均寻道
时间和实际读写时间。可是转速越快发热量越大,不利于散热。现在的主流硬盘转速一般
为7200rpm以上。 
   
    随着硬盘容量的不断增大,硬盘的转速也在不断提高。然而,转速的提高也带来
了磨损加剧、温度升高、噪声增大等一系列负面影响。于是,应用在精密机械工业上的液
态轴承马达(Fluid dynamic bearing motors)便被引入到硬盘技术中。液态轴承马达使
用的是黏膜液油轴承,以油膜代替滚珠。这样可以避免金属面的直接磨擦,将噪声及温度
被减至最低;同时油膜可有效吸收震动,使抗震能力得到提高;更可减少磨损,提高寿命
。 
   
    平均寻道时间(Average seek time):指硬盘在盘面上移动读写头至指定磁道寻
找相应目标数据所用的时间,它描述硬盘读取数据的能力,单位为毫秒。当单碟片容量增
大时,磁头的寻道动作和移动距离减少,从而使平均寻道时间减少,加快硬盘速度。目前
市场上主流硬盘的平均寻道时间一般在9ms以下,大于10ms的硬盘属于较早的产品,一般不
值得购买。 
   
    平均潜伏时间(Average latency time): 指当磁头移动到数据所在的磁道后
,然后等待所要的数据块继续转动到磁头下的时间,一般在2ms-6ms之间。 
   
    平均访问时间(Average access time): 指磁头找到指定数据的平均时间,通
常是平均寻道时间和平均潜伏时间之和。平均访问时间最能够代表硬盘找到某一数据所用
的时间,越短的平均访问时间越好,一般在11ms-18ms之间。注意:现在不少硬盘广告之
中所说的平均访问时间大部分都是用平均寻道时间所代替的。 
   
    突发数据传输率(Burst data transfer rate):指的是电脑通过数据总线从硬盘
内部缓存区中所读取数据的最高速率。也叫外部数据传输率(External data transfer 
rate)。目前采用UDMA/66技术的硬盘的外部传输率已经达到了66.6MB/s。 
   
    最大内部数据传输率(Internal data transfer rate): 指磁头至硬盘缓存间
的最大数据传输率,一般取决于硬盘的盘片转速和盘片数据线密度(指同一磁道上的数据
间隔度)。也叫持续数据传输率(sustained transfer rate)。一般采用UDMA/66技术的
硬盘的内部传输率也不过25-30MB/s,只有极少数产品超过30MB/s,由于内部数据传输率才
是系统真正的瓶颈,因此大家在购买时要分清这两个概念。不过一般来讲,硬盘的转速相
同时,单碟容量大的内部传输率高;在单碟容量相同时,转速高的硬盘的内部传输率高。
   
    自动检测分析及报告技术(Self-Monitoring Analysis and Report Technology
,简称S.M.A.R.T): 现在出厂的硬盘基本上都支持S.M.A.R.T技术。这种技术可以对硬盘
的磁头单元、盘片电机驱动系统、硬盘内部电路以及盘片表面媒介材料等进行监测,当S.M
.A.R.T监测并分析出硬盘可能出现问题时会及时向用户报警以避免电脑数据受到损失。S.M
.A.R.T技术必须在主板支持的前提下才能发生作用,而且S.M.A.R.T技术也不能保证能预报
出所有可能发生的硬盘故障。 
   
    磁阻磁头技术MR(Magneto-Resistive Head): MR(MAGNETO-RESITIVEHEAD)即磁
阻磁头的简称。MR技术可以更高的实际记录密度、记录数据,从而增加硬盘容量,提高数
据吞吐率。目前的MR技术已有几代产品。MAXTOR的钻石三代/四代等均采用了最新的MR技术
。磁阻磁头的工作原理是基于磁阻效应来工作的,其核心是一小片金属材料,其电阻随磁场
变化而变化,虽然其变化率不足2%,但因为磁阻元件连着一个非常灵敏的放大器,所以可测出
该微小的电阻变化。MR技术可使硬盘容量提高40%以上。GMR(GiantMagnetoresistive)巨
磁阻磁头GMR磁头与MR磁头一样,是利用特殊材料的电阻值随磁场变化的原理来读取盘片上
的数据,但是GMR磁头使用了磁阻效应更好的材料和多层薄膜结构,比MR磁头更为敏感,相
同的磁场变化能引起更大的电阻值变化,从而可以实现更高的存储密度,现有的MR磁头能
够达到的盘片密度为3Gbit-5Gbit/in2(千兆位每平方英寸),而GMR磁头可以达到10Gbit
-40Gbit/in2以上。目前GMR磁头已经处于成熟推广期,在今后的数年中,它将会逐步取代
MR磁头,成为最流行的磁头技术。 
   
    缓存: 缓存是硬盘与外部总线交换数据的场所。硬盘的读数据的过程是将磁信号
转化为电信号后,通过缓存一次次地填充与清空,再填充,再清空,一步步按照PCI总线的
周期送出,可见,缓存的作用是相当重要的。在接口技术已经发展到一个相对成熟的阶段
的时候,缓存的大小与速度是直接关系到硬盘的传输速度的重要因素。目前主流硬盘的缓
存主要有512KB和2MB等几种。其类型一般是EDO DRAM或SDRAM,目前一般以SDRAM为主。根
据写入方式的不同,有写通式和回写式两种。写通式在读硬盘数据时,系统先检查请求指
令,看看所要的数据是否在缓存中,如果在的话就由缓存送出响应的数据,这个过程称为
命中。这样系统就不必访问硬盘中的数据,由于SDRAM的速度比磁介质快很多,因此也就加
快了数据传输的速度。回写式就是在写入硬盘数据时也在缓存中找,如果找到就由缓存就
数据写入盘中,现在的多数硬盘都是采用的回写式硬盘,这样就大大提高了性能。 
   
    连续无故障时间(MTBF):指硬盘从开始运行到出现故障的最长时间。一般硬盘
的MTBF至少在30000或40000小时。 
   
    部分响应完全匹配技术PRML(Partial Response Maximum Likelihood):能使盘片
存储更多的信息,同时可以有效地提高数据的读取和数据传输率。是当前应用于硬盘数据
读取通道中的先进技术之一。PRML技术是将硬盘数据读取电路分成两段“操作流水线”,
流水线第一段将磁头读取的信号进行数字化处理然后只选取部分“标准”信号移交第二段
继续处理,第二段将所接收的信号与PRML芯片预置信号模型进行对比,然后选取差异最小
的信号进行组合后输出以完成数据的读取过程。PRML技术可以降低硬盘读取数据的错误率
,因此可以进一步提高磁盘数据密集度。
   
    单磁道时间(Single track seek time):指磁头从一磁道转移至另一磁道所用
的时间。 
   
    超级数字信号处理器(Ultra DSP)技术:用Ultra DSP进行数学运算,其速度较一
般CPU快10到50倍。采用Ultra DSP技术,单个的DSP芯片可以同时提供处理器及驱动接口的
双重功能,以减少其它电子元件的使用,可大幅度地提高硬盘的速度和可靠性。接口技术
可以极大地提高硬盘的最大外部传输率,最大的益处在于可以把数据从硬盘直接传输到主
内存而不占用更多的CPU资源,提高系统性能。 
   
    硬盘表面温度: 指硬盘工作时产生的温度使硬盘密封壳温度上升情况。硬盘工作
时产生的温度过高将影响薄膜式磁头(包括MR磁头)的数据读取灵敏度,因此硬盘工作表面
温度较低的硬盘有更好的数据读、写稳定性。 
   
    全程访问时间(Max full seek time):指磁头开始移动直到最后找到所需要的
数据块所用的全部时间。 
   
    接口技术:口技术可极大地提高硬盘的最大外部数据传输率,现在普遍使用的ULTR
AATA/66已大幅提高了E-IDE接口的性能,所谓UltraDMA66是指一种由Intel及Quantum公司设
计的同步DMA协议。使用该技术的硬盘并配合相应的芯片组,最大传输速度可以由16MB/s提
高到66MS/s。它的最大优点在于把CPU从大量的数据传输中解放出来了,可以把数据从HDD
直接传输到主存而不占用更多的CPU资源,从而在一定程度上提高了整个系统的性能。由于
采用ULTRAATA技术的硬盘整体性能比普通硬盘可提高20%~60%,所以已成为目前E-IDE硬盘
事实上的标准。 
   
    SCSI硬盘的接口技术也在迅速发展。Ultra160/mSCSI被引入硬盘世界,对硬盘在
高计算量应用领域的性能扩展极有裨益,处理关键任务的服务器、图形工作站、冗余磁盘
阵列(RAID)等设备将因此得到性能提升。从技术发展看,Ultra160/mSCSI仅仅是硬盘接
口发展道路上的一环而已,200MB的光纤技术也远未达到止境,未来的接口技术必将令今天
的用户瞠目结舌。 
   
    光纤通道技术具有数据传输速率高、数据传输距离远以及可简化大型存储系统设
计的优点。目前,光纤通道支持每秒200MB的数据传输速率,可以在一个环路上容纳多达12
7个驱动器,局域电缆可在25米范围内运行,远程电缆可在10公里范围内运行。某些专门的
存储应用领域,例如小型存储区域网络(SAN)以及数码视像应用,往往需要高达每秒200M
B的数据传输速率和强劲的联网能力,光纤通道技术的推出正适应了这一需求。同时,其超
长的数据传输距离,大大方便了远程通信的技术实施。由于光纤通道技术的优越性,支持
光纤界面的硬盘产品开始在市场上出现。这些产品一般是大容量硬盘,平均寻道时间短,
适应于高速、高数据量的应用需求,将为中高端存储应用提供良好保证。 
   
    IEEE1394:IEEE1394又称为Firewire(火线)或P1394,它是一种高速串行总线,
现有的IEEE1394标准支持100Mbps、200Mbps和400Mbps的传输速率,将来会达到800Mbps、1
600Mbps、3200Mbps甚至更高,如此高的速率使得它可以作为硬盘、DVD、CD-ROM等大容量
存储设备的接口。IEEE1394将来有望取代现有的SCSI总线和IDE接口,但是由于成本较高和
技术上还不够成熟等原因,目前仍然只有少量使用IEEE1394接口的产品,硬盘就更少了。
   
    硬盘:英文“hard-disk”简称HD 。是一种储存量巨大的设备,作用是储存计算
机运行时需要的数据。计算机的硬盘主要由碟片、磁头、磁头臂、磁头臂服务定位系统和
底层电路板、数据保护系统以及接口等组成。 计算机硬盘的技术指标主要围绕在盘片大小
、盘片多少、单碟容量、磁盘转速、磁头技术、服务定位系统、接口、二级缓存、噪音和S
.M.A.R.T. 等参数上。 
   
    碟片:硬盘的所有数据都存储在碟片上,碟片是由硬质合金组成的盘片,现在还
出现了玻璃盘片。目前的硬盘产品内部盘片大小有:5.25,3.5,2.5和1.8英寸(后两种常
用于笔记本及部分袖珍精密仪器中,现在台式机中常用3.5英寸的盘片)。
   
    磁头:硬盘的磁头是用线圈缠绕在磁芯上制成的,最初的磁头是读写合一的,通
过电流变化去感应信号的幅度。对于大多数计算机来说,在与硬盘交换数据的过程中,读
操作远远快于写操作,而且读/写是两种不同特性的操作,这样就促使硬盘厂商开发一种读
/写分离磁头。在1991年,IBM提出了它基于磁阻(MR)技术的读磁头技术――各项异性磁 
,磁头在和旋转的碟片相接触过程中,通过感应碟片上磁场的变化来读取数据。在硬盘中,
碟片的单碟容量和磁头技术是相互制约、相互促进的。
   
    AMR(Anisotropic Magneto Resistive,AMR):一种磁头技术,AMR技术可以支
持3.3GB/平方英寸的记录密度,在1997年AMR是当时市场的主流技术。
   
    GMR(Giant Magneto Resistive,巨磁阻):比AMR技术磁头灵敏度高2倍以上,G
MR磁头是由4层导电材料和磁性材料薄膜构成的:一个传感层、一个非导电中介层、一个磁
性的栓层和一个交换层。前3个层控制着磁头的电阻。在栓层中,磁场强度是固定的,并且
磁场方向被相临的交换层所保持。而且自由层的磁场强度和方向则是随着转到磁头下面的
磁盘表面的微小磁化区所改变的,这种磁场强度和方向的变化导致明显的磁头电阻变化,
在一个固定的信号电压下面,就可以拾取供硬盘电路处理的信号。
   
    OAW(光学辅助温式技术):希捷正在开发的OAW是未来磁头技术发展的方向,OAW
技术可以在1英寸宽内写入105000以上的磁道,单碟容量有望突破36GB。单碟容量的提高不
仅可以提高硬盘总容量、降低平均寻道时间,还可以降低成本、提高性能。
   
    PRML(局部响应最大拟然,Partial Response Maximum Likelihood):除了磁头
技术的日新月异之外,磁记录技术也是影响硬盘性能非常关键的一个因素。当磁记录密度
达到某一程度后,两个信号之间相互干扰的现象就会非常严重。为了解决这一问题,人们
在硬盘的设计中加入了PRML技术。PRML读取通道方式可以简单地分成两个部分。首先是将
磁头从盘片上所读取的信号加以数字化,并将未达到标准的信号加以舍弃,而没有将信号
输出。这个部分便称为局部响应。最大拟然部分则是拿数字化后的信号模型与PRML芯片本
身的信号模型库加以对比,找出最接近、失真度最小的信号模型,再将这些信号重新组合
而直接输出数据。使用PRML方式,不需要像脉冲检测方式那样高的信号强度,也可以避开
因为信号记录太密集而产生的相互干扰的现象。 磁头技术的进步,再加上目前记录材料技
术和处理技术的发展,将使硬盘的存储密度提升到每平方英寸10GB以上,这将意味着可以
实现40GB或者更大的硬盘容量。 
   
    间隔因子:硬盘磁道上相邻的两个逻辑扇区之间的物理扇区的数量。因为硬盘上
的信息是以扇区的形式来组织的,每个扇区都有一个号码,存取操作要通过这个扇区号,
所以使用一个特定的间隔因子来给扇区编号而有助于获取最佳的数据传输率。 
  着陆区(LZ):为使硬盘有一个起始位置,一般指定一个内层柱面作为着陆区,它使硬
盘磁头在电源关闭之前停回原来的位置。着陆区不用来存储数据,因些可避免磁头在开、
关电源期间紧急降落时所造成数据的损失。目前,一般的硬盘在电源关闭时会自动将磁头
停在着陆区,而老式的硬盘需执行PARK命令才能将磁头归位。 
   
    反应时间:指的是硬盘中的转轮的工作情况。反应时间是硬盘转速的一个最直接
的反应指标。5400RPM的硬盘拥有的是5.55 MS的反应时间,而7200RPM的可以达到4.17 MS
。反应时间是硬盘将利用多长的时间完成第一次的转轮旋转。如果我们确定一个硬盘达到1
20周旋转每秒的速度,那么旋转一周的时间将是1/120即0.008333秒的时间。如果我们的硬
盘是0.0041665秒每周的速度,我们也可以称这块硬盘的反应时间是4.17 ms(1ms=1/1000每
秒)。
   
    平均潜伏期(average latency):指当磁头移动到数据所在的磁道后,然后等待
所要的数据块继续转动(半圈或多些、少些)到磁头下的时间,单位为毫秒(ms)。平均
潜伏期是越小越好,潜伏期小代表硬盘的读取数据的等待时间短,这就等于具有更高的硬
盘数据传输率。
   
    道至道时间(single track seek):指磁头从一磁道转移至另一磁道的时间,单
位为毫秒(ms)。 
   
    全程访问时间(max full seek):指磁头开始移动直到最后找到所需要的数据块
所用的全部时间,单位为毫秒(ms)。 
   
    外部数据传输率:通称突发数据传输率(burst data transfer rate):指从硬
盘缓冲区读取数据的速率,常以数据接口速率代替,单位为MB/S。目前主流硬盘普通采用
的是Ultra ATA/66,它的最大外部数据率即为66.7MB/s,2000年推出的Ultra ATA/100,理
论上最大外部数据率为100MB/s,但由于内部数据传输率的制约往往达不到这么高。
   
    主轴转速:是指硬盘内电机主轴的转动速度,目前ATA(IDE)硬盘的主轴转速一
般为5400-7200rpm,主流硬盘的转速为7200RPM,至于SCSI硬盘的主轴转速可达一般为7200
-10,000RPM,而最高转速的SCSI硬盘转速高达15,000RPM。 
   
    数据缓存:指在硬盘内部的高速存储器,在电脑中就象一块缓冲器一样将一些数
据暂时性的保存起来以供读取和再读取。目前硬盘的高速缓存一般为512KB-2MB,目前主流
ATA硬盘的数据缓存为2MB,而在SCSI硬盘中最高的数据缓存现在已经达到了16MB。对于大
数据缓存的硬盘在存取零散文件时具有很大的优势。 
   
    硬盘表面温度:它是指硬盘工作时产生的温度使硬盘密封壳温度上升情况。硬盘
工作时产生的温度过高将影响磁头的数据读取灵敏度,因此硬盘工作表面温度较低的硬盘
有更好的数据读、写稳定性。 
   
    MTBF(连续无故障时间):它指硬盘从开始运行到出现故障的最长时间,单位是
小时。一般硬盘的MTBF至少在30000或40000小时。
   S.M.A.R.T.(自监测、分析、报告技术):这是现在硬盘普遍采用的数据安全技术,
在硬盘工作的时候监测系统对电机、电路、磁盘、磁头的状态进行分析,当有异常发生的
时候就会发出警告,有的还会自动降速并备份数据。
   
    DPS(数据保护系统):昆腾在火球八代硬盘中首次内建了DPS,在硬盘的前300MB
内存放操作系统等重要信息,DPS可在系统出现问题后的90秒内自动检测恢复系统数据,若
不行则用DPS软盘启动后它会自动分析故障,尽量保证数据不丢失。
   
    数据卫士:是西部数据(WD)特有的硬盘数据安全技术,此技术可在硬盘工作的
空余时间里自动每8个小时自动扫描、检测、修复盘片的各扇区。
   
    MaxSafe:是迈拓在金钻二代上应用的技术,它的核心是将附加的ECC校验位保存
在硬盘上,使读写过程都经过校验以保证数据的完整性。
   
    DST:驱动器自我检测技术,是希捷公司在自己硬盘中采用的数据安全技术,此技
术可保证保存在硬盘中数据的安全性。
   
    DFT:驱动器健康检测技术,是IBM公司在自己硬盘中采用的数据安全技术,此技
术同以上几种技术一样可极大的提高数据的安全性。
   
    噪音与防震技术:硬盘主轴高速旋转时不可避免的产生噪音,并会因金属磨擦而
产生磨损和发热问题,“液态轴承马达”就可以解决这一问题。它使用的是黏膜液油轴承
,以油膜代替滚珠,可有效地降低以上问题。同时液油轴承也可有效地吸收震动,使硬盘
的抗震能力由一般的一二百个G提高到了一千多G,因此硬盘的寿命与可靠性也可以得到提
高。昆腾在火球七代(EX)系列之后的硬盘都应用了SPS震动保护系统;迈拓在金钻二代上
应用了ShockBlock防震保护系统,他们的目的都是分散冲击能量,尽量避免磁头和盘片的
撞击;希捷的金牌系列硬盘中SeaShield系统是用减震材料制成的保护软罩外加磁头臂与盘
片间的防震设计来实现的。
   
    ST-506/412接口:这是希捷开发的一种硬盘接口,首先使用这种接口的硬盘为希
捷的ST-506及ST-412。ST-506接口使用起来相当简便,它不需要任何特殊的电缆及接头
,但是它支持的传输速度很低,因此到了1987年左右这种接口就基本上被淘汰了,采用该
接口的老硬盘容量多数都低于200MB。早期IBM PC/XT和PC/AT机器使用的硬盘就是ST-506/
412硬盘或称MFM硬盘-MFM(Modified Frequency Modulation)是指一种编码方案。
   
    ESDI接口:即(Enhanced Small Drive Interface)接口,它是迈拓公司于1983
年开发的。其特点是将编解码器放在硬盘本身之中,而不是在控制卡上,理论传输速度是
前面所述的ST-506的2…4倍,一般可达到10Mbps。但其成本较高,与后来产生的IDE接口相
比无优势可言,因此在九十年代后就被淘汰了。
   
    IDE及EIDE接口:IDE(Integrated Drive Electronics)的本意实际上是指把控
制器与盘体集成在一起的硬盘驱动器,我们常说的IDE接口,也叫ATA(Advanced 
Technology Attachment)接口,现在PC机使用的硬盘大多数都是IDE兼容的,只需用一根
电缆将它们与主板或接口卡连起来就可以了。把盘体与控制器集成在一起的做法减少了硬
盘接口的电缆数目与长度,数据传输的可靠性得到了增强,硬盘制造起来变得更容易,因
为厂商不需要再担心自己的硬盘是否与其它厂商生产的控制器兼容,对用户而言,硬盘安
装起来也更为方便。
   
    ATA-1(IDE):ATA是最早的IDE标准的正式名称,IDE实际上是指连在硬盘接口的硬
盘本身。ATA在主板上有一个插口,支持一个主设备和一个从设备,每个设备的最大容量为
504MB,ATA最早支持的PIO-0模式(Programmed I/O-0)只有3.3MB/s,而ATA-1一共规定了
3种PIO模式和4种DMA模式(没有得到实际应用),要升级为ATA-2,需要安装一个EIDE适配
卡。 
   
    ATA-2 (EIDE Enhanced IDE/Fast ATA):这是对ATA-1的扩展,它增加了2种PI
O和2种DMA模式,把最高传输率提高到了16.7MB/s,同时引进了LBA地址转换方式,突破了
老BIOS固有504MB的限制,支持最高可达8.1GB的硬盘。如你的电脑支持ATA-2,则可以在CM
OS设置中找到(LBA,LogicalBlock Address)或(CHS,Cylinder,Head,Sector)的设置
。其两个插口分别可以连接一个主设备和一个从设置,从而可以支持四个设备,两个插口
也分为主插口和从插口。通常可将最快的硬盘和CD-ROM放置在主插口上,而将次要一些的
设备放在从插口上,这种放置方式对于486及早期的Pentium电脑是必要的,这样可以使主
插口连在快速的PCI总线上,而从插口连在较慢的ISA总线上。
   
   
  三、内存术语解释
   
    BANK:BANK是指内存插槽的计算单位(也有人称为记忆库),它是计算机系统与内
存间资料汇流的基本运作单位。
   
    内存的速度:内存的速度是以每笔CPU与内存间数据处理耗费的时间来计算,为总
线循环(bus cycle)以奈秒(ns)为单位。 
   
    内存模块 (Memory Module):提到内存模块是指一个印刷电路板表面上有镶嵌数
个记忆体芯片chips,而这内存芯片通常是DRAM芯片,但近来系统设计也有使用快取隐藏式
芯片镶嵌在内存模块上内存模块是安装在PC 的主机板上的专用插槽(Slot)上镶嵌在Module
上DRAM芯片(chips)的数量和个别芯片(chips)的容量,是决定内存模块的设计的主要因素
。 
   
    SIMM (Single In-line Memory Module):电路板上面焊有数目不等的记忆IC,可
分为以下2种型态:
   
      72PIN:72脚位的单面内存模块是用来支持32位的数据处理量。
   
      30PIN:30脚位的单面内存模块是用来支持8位的数据处理量。 
   
    DIMM (Dual In-line Memory Module):(168PIN) 用来支持64位或是更宽的总
线,而且只用3.3伏特的电压,通常用在64位的桌上型计算机或是服务器。
   
    RIMM:RIMM模块是下一世代的内存模块主要规格之一,它是Intel公司于1999年推
出芯片组所支持的内存模块,其频宽高达1.6Gbyte/sec。 
   
    SO-DIMM (Small Outline Dual In-line Memory Module) (144PIN): 这是一
种改良型的DIMM模块,比一般的DIMM模块来得小,应用于笔记型计算机、列表机、传真机
或是各种终端机等。 
   
    PLL: 为锁相回路,用来统一整合时脉讯号,使内存能正确的存取资料。 
   
    Rambus 内存模块 (184PIN): 采用Direct RDRAM的内存模块,称之为RIMM模块
,该模块有184pin脚,资料的输出方式为串行,与现行使用的DIMM模块168pin,并列输出
的架构有很大的差异。 
   
    6层板和4层板(6 layers V.S. 4 layers): 指的是电路印刷板PCB Printed 
Circuit Board用6层或4层的玻璃纤维做成,通常SDRAM会使用6层板,虽然会增加PCB的成
本但却可免除噪声的干扰,而4层板虽可降低PCB的成本但效能较差。 
   
    Register:是缓存器的意思,其功能是能够在高速下达到同步的目的。 
   
    SPD:为Serial Presence Detect 的缩写,它是烧录在EEPROM内的码,以往开机
时BIOS必须侦测memory,但有了SPD就不必再去作侦测的动作,而由BIOS直接读取 SPD取得
内存的相关资料。 
   
    Parity和ECC的比较:同位检查码(parity check codes)被广泛地使用在侦错码(e
rror detection codes)上,他们增加一个检查位给每个资料的字元(或字节),并且能够侦
测到一个字符中所有奇(偶)同位的错误,但Parity有一个缺点,当计算机查到某个Byte有
错误时,并不能确定错误在哪一个位,也就无法修正错误。
   
    缓冲器和无缓冲器(Buffer V.S. Unbuffer):有缓冲器的DIMM 是用来改善时序
(timing)问题的一种方法无缓冲器的DIMM虽然可被设计用于系统上,但它只能支援四条DIM
M。若将无缓冲器的DIMM用于速度为100Mhz的主机板上的话,将会有存取不良的影响。而有
缓冲器的DIMM则可使用四条以上的内存,但是若使用的缓冲器速度不够快的话会影响其执
行效果。换言之,有缓冲器的DIMM虽有速度变慢之虞,但它可以支持更多DIMM的使用。
   
    自我充电 (Self-Refresh):DRAM内部具有独立且内建的充电电路于一定时间内做
自我充电, 通常用在笔记型计算机或可携式计算机等的省电需求高的计算机。 
   
    预充电时间 (CAS Latency):通常简称CL。例如CL=3,表示计算机系统自主存储
器读取第一笔资料时,所需的准备时间为3个外部时脉 (System clock)。CL2与CL3的差异
仅在第一次读取资料所需准备时间,相差一个时脉,对整个系统的效能并无显著影响。 
   
    时钟信号 (Clock):时钟信号是提供给同步内存做讯号同步之用,同步记忆体的
存取动作必需与时钟信号同步。 
   
    电子工程设计发展联合会议 (JEDEC):JEDEC大部分是由从事设计、发明的制造业
尤以有关计算机记忆模块所组成的一个团体财团,一般工业所生产的记忆体产品大多以JED
EC所制定的标准为评量。 
   
    只读存储器ROM (Read Only Memory):ROM是一种只能读取而不能写入资料之记燱
体,因为这个特所以最常见的就是主机板上的 BIOS (基本输入/输出系统Basic 
Input/Output System)因为BISO是计算机开机必备的基本硬件设定用来与外围做为低阶通
信接口,所以BISO之程式烧录于ROM中以避免随意被清除资料。 
   
    EEPROM (Electrically Erasable Programmable ROM):为一种将资料写入后即使
在电源关闭的情况下,也可以保留一段相当长的时间,且写入资料时不需要另外提高电压
,只要写入某一些句柄,就可以把资料写入内存中了。 
   
    EPROM (Erasable Programmable ROM):为一种可以透过紫外线的照射将其内部的
资料清除掉之后,再用烧录器之类的设备将资料烧录进 EPROM内,优点为可以重复的烧录
资料。 
   
    程序规画的只读存储器 (PROM):是一种可存程序的内存,因为只能写一次资料,
所以它一旦被写入资料若有错误,是无法改变的且无法再存其它资料,所以只要写错资料
这颗内存就无法回收重新使用。 
   
    MASK ROM:是制造商为了要大量生产,事先制作一颗有原始数据的ROM或EPROM当
作样本,然后再大量生产与样本一样的 ROM,这一种做为大量生产的ROM样本就是MASK 
ROM,而烧录在MASK ROM中的资料永远无法做修改。 
   
    随机存取内存RAM ( Random Access Memory):RAM是可被读取和写入的内存,我
们在写资料到RAM记忆体时也同时可从RAM读取资料,这和ROM内存有所不同。但是RAM必须
由稳定流畅的电力来保持它本身的稳定性,所以一旦把电源关闭则原先在RAM里头的资料将
随之消失。 
   
    动态随机存取内存 DRAM (Dynamic Random Access Memory):DRAM 是Dynamic 
Random Access Memory 的缩写,通常是计算机内的主存储器,它是而用电容来做储存动作
,但因电容本身有漏电问题,所以内存内的资料须持续地存取不然
  资料会不见。 
   
    FPM DRAM (Fast Page Mode DRAM):是改良的DRAM,大多数为72IPN或30PIN的模
块,FPM 将记忆体内部隔成许多页数Pages,从512 bite 到数 Kilobytes 不等,它特色是
不需等到重新读取时,就可读取各page内的资
  料。 
   
    EDO DRAM (Extended Data Out DRAM):EDO的存取速度比传统DRAM快10%左右,比
FPM快12到30倍一般为72PIN、168PIN的模块。 
   
    SDRAM:Synchronous DRAM 是一种新的DRAM架构的技术;它运用晶片内的clock使
输入及输出能同步进行。所谓clock同步是指记忆体时脉与CPU的时脉能同步存取资料。SDR
AM节省执行指令及数据传输的时间,故可提升计算机效率。
   
    DDR:DDR 是一种更高速的同步内存,DDR SDRAM为168PIN的DIMM模块,它比SDRAM
的传输速率更快, DDR的设计是应用在服务器、工作站及数据传输等较高速需求之系统。
   
    DDRII (Double Data Rate Synchronous DRAM):DDRII 是DDR原有的SLDRAM联盟
于1999年解散后将既有的研发成果与DDR整合之后的未来新标准。DDRII的详细规格目前尚
未确定。 
   
    DRDRAM (Direct Rambus DRAM):是下一代的主流内存标准之一,由Rambus 公司
所设计发展出来,是将所有的接脚都连结到一个共同的Bus,这样不但可以减少控制器的体
积,已可以增加资料传送的效率。 
   
    RDRAM (Rambus DRAM):是由Rambus公司独立设计完成,它的速度约一般DRAM的10
倍以上,虽有这样强的效能,但使用后内存控制器需要相当大的改变,所以目前这一类的
内存大多使用在游戏机器或者专业的图形加速适配卡上。 
   
    VRAM (Video RAM):与DRAM最大的不同在于其有两组输出及输入口,所以可以同
时一边读入,一边输出资料。 
   
    WRAM (Window RAM):属于VRAM的改良版,其不同之处在于其控制线路有一、二十
组的输入/输出控制器,并采用EDO的资料存取模式。 
   
    MDRAM (Multi-Bank RAM):MIDRAM 的内部分成数个各别不同的小储存库 (BANK)
,也就是数个属立的小单位矩阵所构成。每个储存库之间以高于外部的资料速度相互连接
,其应用于高速显示卡或加速卡中。 
   
    静态随机处理内存 SRAM (Static Random Access Memory):SRAM 是Static 
Random Access Memory 的缩写,通常比一般的动态随机处理内存处理速度更快更稳定。所
谓静态的意义是指内存资料可以常驻而不须随时存取。因为此种特性,静态随机处理内存
通常被用来做高速缓存。 
   
    Async SRAM:为异步SRAM这是一种较为旧型的SRAM,通常被用于电脑上的 
Level 2 Cache上,它在运作时独立于计算机的系统时脉外。 
   
    Sync SRAM:为同步SRAM,它的工作时脉与系统是同步的。 
   
    SGRAM (Synchronous Graphics RAM):是由SDRAM再改良而成以区块Block为单位
,个别地取回或修改存取的资料,减少内存整体读写的次数增加绘图控制器。 
   
    高速缓存 (Cache Ram):为一种高速度的内存是被设计用来处理运作CPU。快取记
忆体是利用 SRAM 的颗粒来做内存。因连接方式不同可分为一是外接方式(External)另一
种为内接方式(Internal)。外接方式是将内存放在主机板上也称为Level 1 Cache而内接方
式是将内存放在CPU中称为Level 2 Cache。 
   
    PCMCIA (Personal Computer Memory Card International Association):是一
种标准的卡片型扩充接口,多半用于笔记型计算机上或是其它外围产品,其种类可以分为

   
      Type 1:3.3mm的厚度,常作成SRAM、Flash RAM 的记忆卡以及最近打印机所
使用的DRAM记忆卡。
      Type 2:5.5mm的厚度,通常设计为笔记计算机所使用的调制解调器接口(Mod
em)。
      Type 3:10.5mm的厚度,被运用为连接硬盘的ATA接口。
      Type 4:小型的PCMCIA卡,大部用于数字相机。 
   
    FLASH:Flash内存比较像是一种储存装置,因为当电源关掉后储存在Flash内存中
的资料并不会流失掉,在写入资料时必须先将原本的资料清除掉,然后才能再写入新的资
料,缺点为写入资料的速度太慢。 
   
    重新标示过的内存模块(Remark Memory Module):在内存市场许多商家都会贩
售重新标示过的内存模块,所谓重新标示过的内存模块就是将芯片Chip上的标示变更过,
使其所显示出错误的讯息以提供商家赚取更多的利润。一般说来,业者会标示成较快的速
度将( -7改成-6)或将没有厂牌的改为有厂牌的。要避免购买到这方面的产品,最佳的方法
就是向好声誉的供货商来购买顶级芯片制造商产品。 
   
    内存的充电 (Refresh):主存储器是DRAM组合而成,其电容需不断充电以保持资
料的正确。一般有2K与4K Refresh的分类,而2K比4K有较快速的Refresh但2K比4K耗电。
   
   
  四、光驱术语解释
   
    CLV技术:(Constant-Linear-Velocity)恒定线速度读取方式。在低于12倍速的
光驱中使用的技术。它是为了保持数据传输率不变,而随时改变旋转光盘的速度。读取内
沿数据的旋转速度比外部要快许多。 
   
    CAV技术:(Constant-Angular-Velocity)恒定角速度读取方式。它是用同样的
速度来读取光盘上的数据。但光盘上的内沿数据比外沿数据传输速度要低,越往外越能体
现光驱的速度,倍速指的是最高数据传输率。 
   
    PCAV技术:(Partial-CAV)区域恒定角速度读取方式。是融合了CLV和CAV的一种
新技术,它是在读取外沿数据采用CAV技术,在读取内沿数据采用CAV技术,提高整体数据
传输的速度。 
   
    UDMA模式:(Ultra-DMA/33),1996年由Intdl和Quantum制定的一种数据传输方
式,该方式I/O系统的突发数据传输速度可达33MB/s,还可以降低I/O系统对CPU资源的占用
率。现在又出现了UDMA/66,速度多出两倍。 
   
    PIOM模式:(PIO-Mode)以前普遍采用的数据传输模式,每个操作都要经过CPU才
可完成,占用CPU的大量资源。 
   
    SCIC接口:(Small-Computer-Sysem-Interface)是一种新型的外部接口,可驱
动多个外部设备;数据传输率可达40MB,以后将成为外部接口的标准,价格昂贵。但占用C
PU资源少,工作稳定。 
   
    IDE接口:(Integrated-Drive-Electronics)是现在普遍使用的外部接口,主要
接硬盘和光驱。采用16位数据并行传送方式,体积小,数据传输快。一个IDE接口只能接两
个外部设备。
   
    倍速: 指的是光驱数据传输率,国际电子工业联合会把150KB/s的数据传输率定
为单倍速光驱。300KB/s的数据传输率也就是双倍速。依次计算得出。 
   
    数据传输率:(data-transfer-rate)是指光驱每秒中在光盘上可读取多少千字
节(kilobytes)的资料量,直接决定了光驱运行速度。单倍速光驱的数据传输率是150KB/
s。 
   
    平均读取时间:(Average-Seek-Time)是指激光头移动定位到指定的预读取数据
(这时间为rotation-latency)后,开始读取数据,之后到将数据传输至电路上所需的时
间。它也是光驱速度的一重要指标。 
   
    缓存容量:它提供一个数据缓冲,先将读出的数据暂存起来,然后进行一次性传
送。解决与其它设备的速度匹配差距。
   
    激光头:它由中心往外移动在Table-of-Contents区域,通过发射激光来寻找光盘
上的指定位置,感应电阻接受到反射出的信号输出成电子数据
   
    CD:(Compact-Disc)光盘。CD是由liad-in(资料开始记录的位置);而后是Ta
ble-of-Contents区域,由内及外记录资料;在记录之后加上一个lead-out的资料轨结束记
录的标记。在CD光盘,模拟数据通过大型刻录机在CD上面刻出许多连肉眼都看不见的小坑
。 
   
    CD-DA:(CD-Audio)用来储存数位音效的光蝶片。1982年SONY、Philips所共同
制定红皮书标准,以音轨方式储存声音资料。CD-ROM都兼容此规格音乐片的能力。 
   
    CD-G:(Compact-Disc-Graphics)CD-DA基础上加入图形成为另一格式,但未能
推广。是对多媒体电脑的一次尝试。 
   
    CD-ROM:(Compact-Disc-Read-Only-Memory)只读光盘机。1986年, SONY、Phi
lips一起制定的黄皮书标准,定义档案资料格式。定义了用于电脑数据存储的MODE1和用于
压缩视频图象存储的MODE2两类型,使CD成为通用的储存介质。并加上侦错码及更正码等位
元,以确保电脑资料能够完整读取无误。
   
    CD-PLUS:1994年,Microsoft公布了新的增强的CD的标准,又称为CD-Elure。它
是将CD-Audio音效放在CD的第一轨,而后放资料档案,如此一来CD只会读到前面的音轨,
不会读到资料轨,达到电脑与音响两用的好处。 
   
    CD-ROM XA:(CD-ROM-eXtended-Architecture)1989年,SONY、Philips、Micuos
oft对CD-ROM标准扩充形成的白皮书标准。又分为FORM1、FORM2两种和一种增强型CD标准CD
+。 
   
    VCD:(Video-CD)激光视盘。SONY、Philips、JVC、Matsushita等共同制定,属
白皮书标准。是指全动态、全屏播放的激光影视光盘。 
   
    CD-I:(Compact-Disc-Interactive)年,是Philips、SONY共同制定的绿皮书标
准。是互动式光盘系统。1992年实现全动态视频图像播放
   
    Photo-CD: 1989年,KODAK公司推出相片光盘的橘皮书标准,可存100张具有五种
格式的高分辨率照片。可加上相应的解说词和背景音乐或插曲,成为有声电子图片集。 
   
    CD-R:(Compact-Disc-Recordable)1990年,Philips发表多段式一次性写入光
盘数据格式。属于橘皮书标准。在光盘上加一层可一次性记录的染色层,可通进行刻录。 

   
    CD-RW:在光盘上加一层可改写的染色层,通过激光可在光盘上反复多次写入数据
。 
   
    SDCD:(Super-Density-CD)是东芝(TOSHIBA)、日立(Hitachi)、先锋、松下(Pa
nasonic)、JVC、汤姆森(Thomson)、三菱、Timewamer等制订一种超密度光盘规范。双面提
供5GB的储存量,数据压缩比不高 
   
    MMCD:(Multi-Mdeia-CD)是由SONY、Philips等制定的多媒体光盘,单面提供3.
7GB储存量,数据压缩比较高。 
   
    HD-CD:(High-Density-CD)高密度光盘。容量大。单面容量4.7GB,双面容量高
达9.4GB,有的达到7GB。HD-CD光盘采用MPEG-2标准。
   
    MPEG-2: 1994年,ISO/IEC组织制定的运动图像及其声音编码标准。针对广播级
的图像和立体声信号的压缩和解压缩。
   
    DVD:(Digital-Versatile-Disk)数字多用光盘,以MPEG-2为标准,拥有4.7G的
大容量,可储存133分钟的高分辨率全动态影视节目,包括个杜比数字环绕声音轨道,图像
和声音质量是VCD所不及的。
   
    DVD+RW:可反复写入的DVD光盘,又叫DVD-E。由HP、SONY、Phioips共同发布的一
个标准。容量为3.0GB,采用CAV技术来获得较高的数据传输率
   
    PD光驱:(PowerDisk2)是Panasonic公司将可写光驱和CD-ROM合二为一,有LF-1
000(外置式)和LF-1004(内置式)两种类型。容量为65OMB,数据传输率达5.0MB/s,采
用微型激光头和精密机电伺服系统。
   
    ABS平衡系统:(Auto-Balance-System)是DIAMOND-DATA最新推出的三菱钻石系
列高倍速光驱所配带的,是在光驱托盘下安上一具钢铢轴承,光驱震动时,钢珠在离心力
的作用下到质量轻的部分,起到平衡作用,加大读盘能力。
   
    部分安装:(Partial-Installation)在安装软体时,只安装一些必须或基本的
档案,当执行特殊的功能时,再读取或执行光盘中的档案,这样系统便可配合一具有高速
度、高效能和高稳定的光驱,达到最佳效能 
   
    DVD-RAM:DVD论坛协会确立和公布的一项商务可读写DVD标准。它容量大而价格低
、速度不慢且兼容性高。
   
   
  五、modem术语解释
   
    AT命令(ATCommands):由Hayes公司发明,现在已成为事实上的标准并被所有调制
解调器制造商采用的一个调制解调器命令语言。每条命令以字母“AT”开头,因而得名。A
T后跟字母和数字表明具体的功能,例如“ATDT”是拨号命令,其它命令有“初始化调制解
调器”、“控制扬声器音量”、“规定调制解调器启动应答的振铃次数”、“选择错误校
正的格式”等等,不同牌号调制解调器的AT命令并不完全相同,请仔细阅读MODEM用户手册
,以便正确使用AT命令。
   
    波特率(BaudRate):模拟线路信号的速率,也称调制速率,以波形每秒的振荡数
来衡量。如果数据不压缩,波特率等于每秒钟传输的数据位数,如果数据进行了压缩,那
么每秒钟传输的数据位数通常大于调制速率,使得交换使用波特和比特/秒偶尔会产生错误

   
    DCE:“DataCommunicationEquipment(数据通信设备)”的首字母缩略词。DCE提
供建立、保持和终止联接的功能,调制解调器就是一种DCE。
   
    DTE:“DataTerminalEquipment(数据终端设备)”的首字母缩略词。DTE提供或接
收数据。联接到调制解调器上的计算机就是一种DTE。
   
    调制解调器(Modem):MOdulator/DEModulator(调制器/解调器)的缩写。它是在发
送端通过调制将数字信号转换为模拟信号,而在接收端通过解调再将模拟信号转换为数字
信号的一种装置。
   
    线路速率(LineRate):又称DTE速率,单位是bit/s(bps)。指的是连结两个调制解
调器之间的电话线(或专线)上数据的传输速率。常见速率有28800bps、19200bps、14400bp
s、9600bps、2400bps。
   
    端口速率(PortRate):又称DCE速率或最大吞吐量。指的是计算机串口到调制解调
器的传输速率。由于现今调制解调器几乎都支持该速率的V.42bis和MNP5压缩标准(压缩比
都是4:1),所以这一速率一般比线路速率高得多。
   
    专线/拨号专线:指的是普通的两根无源(或有源)电线。在专线上拨号没有拨号音
,因而需专门硬件支持。拨号线就是普通电话线,通过电话系统拨号。常见的调制解调器
都支持拨号线,而不一定支持专线。
   
    远程设置(RomoteSetup):指本地调制解调器与远方调制解调器连通后,远方使用
者能对本地调制解调器的参数进行设置。
   
    贺氏兼容:由于Hayes公司发明的AT指令得到了广泛的应用。大多数其它生产调制
解调器的公司都使用Hayes公司的AT命令来控制调制解调器,这类调制解调器都是贺氏兼容
调制解调器。
   
    速率:指调制解调器每秒可以传输的数据量的大小。调制解调器行业中,一般以K
bps作为单位。56 Kbps的意思是每秒可以传送的二进制数量是56,000个。
   
    异步:一种通讯方式,对设备需求简单。我们的PC机提供的标准通信接口都是异
步的。
   
    同步:一种通讯方式,对设备需求复杂,但通讯质量高。
   
    数据位:利用调制解调器在线路上传输数据时,每传送一组数据,都要含有相应
的控制数据,包括开始发送数据,结束数据,而这组数据中最重要的是数据位。不同的通
讯环境下,一般规定不同的数据位和结束位数量。
   
    流量控制:用于控制调制解调器与计算机之间的数据流,具有防止因为计算机和
调制解调器之间通信处理速度的不匹配而引起的数据丢失。通常有硬件流量控制(RTS/CTS
)和软件流量(XON/XOFF)控制。
   
    终端仿真:早期的计算机使用方式都是一台主机和许多字符方式的终端一起工作
,现在的PC机也可以模仿各种终端,并可以通过调制解调器连接到其它的计算机上。模仿
终端的计算机软件叫做终端仿真。
   
    载波:由于普通电话线上只能传输声音信号,因此调制解调器要将计算机上的数
字信号,转换为声音信号后经电话线传输。载波实际上也是一种声音信号,它携带着计算
机上的数字信息。调制解调器需要载波信号进行彼此的沟通,因此只有载波信号在两台调
制解调器之间建立起来,调制解调器才称为连通。
   
    终端速率:指调制解调器与计算机通信端口之间的连接速度。这个速度应大于载
波速率。
   
    载波速率:调制解调器之间通过电话线路能够达到的数据传输速度。平常所说的
调制解调器速率是指载波速率。
   
    自动应答:当有收到电话的振铃信号时,调制解调器自动开始回答对方的呼叫,
并建立连接,以便进行计算机通信。
   
   
  六、声卡术语解释
   
    DSP:即Digital Signal Processing (数字信号处理)。DSP技术在音调控制、失
真效果器、Wah-wah踏板等模拟电子领域有广泛的应用。同时,DSP在模拟均衡和混响等多
种效果上也能大显身手 。通过电脑CPU或专门的DSP芯片都可以进行DSP 动作,不同的是,专
门的DSP芯片处理要比电脑CPU处理更优化,速度更快 。
   
    采样:把模拟音频转成数字音频的过程,就称作采样,所用到的主要设备便是模拟
/数字转换器(Analog to Digital Converter,即ADC,与之对应的是数/模转换器,即DAC
)。采样的过程实际上是将通常的模拟音频信号的电信号转换成二进制码0和1,这些0和1
便构成了数字音频文件。采样的频率越大则音质越有保证。由于采样频率一定要高于录制
的最高频率的两倍才不会产生失真,而人类的听力范围是20Hz~20KHz,所以采样频率至少
得是20k×2=40KHz,才能保证不产生低频失真,这也是CD音质采用44.1KHz(稍高于40kHz是
为了留有余地)的原因。
   
    信噪比:以dB计算的信号最大保真输出与不可避免的电子噪音的比率。该值越大
越好。低于75dB这个指标,噪音在寂静时有可能被发现。AWE64 Gold声卡的信噪比是80dB
,较为合理。SB Live!更是宣称超过120dB的顶级信噪比。总的说来,由于电脑里的高频干
扰太大,所以声卡的信噪比往往不能令人满意。但SB Live!提供了一个数字输出口SPDIF,
可绕过输出时的模拟部分,极大地减少了噪音和失真,同时又极大地提高了动态范围和清
晰度
   
    声卡 (Sound Card):顾名思义,就是发声的卡片,它象人喉咙中的声带一样,有
了它就能发出声音,就能交流,你还可以唱歌。声卡在电脑中的作用也是这样,它可以实
现人机交流,如学习外语,语音输入等。声卡在港台地区称为音效卡或声效卡,是多媒体
电脑中必不可少的,电脑也就有发声的功能。声卡对于电脑音乐人来说是必备部件,因为
用它作出来的音乐比用传统制作方法要好很多。声卡它带你进入了一个"五彩缤纷"的有声
世界.让你充分感到大自然的奇妙。
   
    合成技术:声卡中的合成技术有两种类型,第一,FM合成技术(Frenquency 
Modulation频率调制);第二,WAVE TABLE(波表)合成技术。FM合成技术用计算的方法来
把乐器的真实声音表现出来,它不需要很大的存储容量就能模拟出多种声音来,它的结构
简单,成本低,但它的模仿能力很差。波表的英文名称为“WAVE TABLE”,从字面翻译就
是“波形表格”的意思。其实它是将各种真实乐器所能发出的所有声音(包括各个音域、
声调)录制下来,存贮为一个波表文件。播放时,根据MIDI文件纪录的乐曲信息向波表发
出指令,从波表库逐一找出对应的声音信息,经过合成、加工后回放出来。由于它采用的
是真实乐器的采样,所以效果自然要好于FM。一般波表的乐器声音信息都以44.1KHz、16Bi
t的精度录制,以达到最真实回放效果。
   
    “软”波表技术:它是软件的形式(声卡中WAVE TABLE存放在硬盘中,用的时候CPU
调出)代替WAVE TABLE。
   
    DLS:可下载音源模块它是一种新型PCI声卡所采用的一种技术,它将波表存放在硬
盘上,需要是再调入内存.但它与WAVE TABLE有一定的区别,DLS要用专用芯片的PCI声卡来实
现音乐合成,而软波表技术是要通过CPU来实现音乐合成的. 
   
    Sound Font:是新加坡创新公司在中档声卡上使用的音色库技术。它是用字符合
成的,一个Sound Fond表现出一组音乐符号。用MIDI键盘输入乐符时,会自动记下MIDI的
参数,最后在Sound Fond中查找,当你需要它时,就下载到声卡上。它有一个最大的好处
就是,不会因声卡的存储容量不够而影响到声音的质量,能够达到全音调和音色的理想环
境。现在,只有在高档声卡上才采用这种方式。当然了原因有两种,在创新的这种音色库
以外,还有就是微软的DLS标准。相比较来说,Sound Font技术实用性突出,但是只有创新
声卡能用,微软的DLS多用在PCI声卡上。 
   
    波表升级子卡:可以将FM声卡升级为WAVE TABLE声卡。但是原声卡必须带有升级
接口。由于各种声卡的品牌及声卡上所支持的存储器是不同的,因此价格差别就很大。对
于用FM声卡的朋友来说,波表升级子卡是很不错的选择。但它也有一个性能/价格比的问题
,是否值得要详加权衡。
   
    采样位数:即采样值或取样值。它是用来衡量声音波动变化的一个参数,也就是
声卡的分辨率。它的数值越大,分辨率也就越高,所发出声音的能力越强。声卡的位是指
声卡在采集和播放声音文件时所使用数字声音信号的二进制位数。声卡的位客观地反映了
数字声音信号对输入声音信号描述的准确程度。在多媒体电脑中用16位的声卡就可以了,
因为人耳对声音精确度的分辨率达不到16位。
   
    采样频率:即取样频率,指每秒钟取得声音样本的次数.它的采样频率越高,声音的
质量也就越好,但是它占的内存比较多.由于人耳的分辨率很有限,所以太高的频率就分辨不
出好坏来.采样频率一般共分为22.05KHz、44.1KHz、48KHz三个等级,22.05只能达到FM广
播的声音品质,44.1KHz则是理论上的CD音质界限,48KHz则更加精确一些。对于高于48KHz
的采样频率人耳已无法辨别出来了,所以在电脑上没有多少使用价值。 
   
    DAC:电脑对声音这种信号不能直接处理,先把它转化成电脑能识别的数字信号,
就要用到声卡中的DAC(数字/模拟转换),它把声音信号转换成数字信号,要分两步
进行,采样和转换。 
   
    音源:从字面意思理解就是声音的来源,即声音来自何方。它主要把声音完全准
确地表现出来。分为两种形式,外置式,它不受声卡的制约,声音的质量能很好的保存下
来,但是成本要求很高。内置式,也称音源字卡。 
   
    音源字卡:它自己本身带有音乐的来源但又必须依附在声卡上使用的一块硬盘。
在你的电脑上带有WAVE BLASTER插头的声卡,就可以用音源字卡。用音源字卡的要求很低
,它设置时不占用中断,地址不会重新选择,也不用驱动程序,只要把MIDI的端口设置成S
B MIDI OUT即可。
   
    复音 (Polyphone):这个复音可不是在英语中所学的“辅音”,是指在同一时间
内声卡所能发出声音的数量.如果你放一首MIDI音乐的时候,它所含的复音数必须小于或等
于你所用的声卡的复音数,就能听到最佳的效果.因此,你的声卡的复音数越多,你将能听到
许多美妙的音乐.但是你将花更多的钱. 
   
    MP3:它是将声音文件按1比10的比例压缩成很小的文件存储在光盘上.我们通常所
听的VCD一张盘也就只有一二十首,但是经过MP3文件加工的一张光盘可放几百首是不成问题
的,这对于电脑音乐的发烧友来说是再好不过了 
   
    MIDI (Musical Indtrumend Digital Interfoce音乐设备数字接口):它不是音
乐信号,所记录的声音要想播放出来就必须通过MIDI界面的设置。是电子合成器与数字音
乐的使用标准,同时也是电脑和电子乐器之间的桥梁。对于电脑音乐爱好者来说是一个不
错的选择。
   
    WAV:在Windows中,把声音文件存储到硬盘上的扩展名为WAV。WAV记录的是声音
的本身,所以它占的硬盘空间大的很。例如:16位的44.1KHZ的立体声声音一分钟要占用大
约10MB的容量,和MIDI相比就差的很远。这样看来,声卡的压缩功能同样重要。 
   
    WOC:它是声音文件的一种存放形式。只要扩展名为VOC的文件在DOS系统下即可播
放。它与WAV只是格式不同,核心部分没有根本的区别。这种形式都是先将数字化信号经过
数字/模拟转换后,由放大器送到喇叭发出声音。 
   
    AVI:(Audio-Video Interactive)音频视频交互,它是微软公司(Microsoft)推
出的一个音频、视频信号压缩标准。 
   
    单声道:单声道是比较原始的声音复制形式,早期的声卡采用的比较普遍。当通
过两个扬声器回放单声道信息的时候,我们可以明显感觉到声音是从两个音箱中间传递到
我们耳朵里的。这种缺乏位置感的录制方式是很落后的,但在声卡刚刚起步时,已经是非
常先进的技术了。 
   
    3D立体声系统:它就是我们通常所说的三维.从三个方面增强了声卡的音响的效果
,第一:我们所听到的声音立体声增强,第二;声音位移;第三,混响效果.不管是在自己家里,
还是在电影院里,不管是放VCD还是影碟,每次在屏幕上都会出现两个声道让你选择即"左声
道""右声道",我们就要把它全选,两种声道的声音混合在一起,听起来有一种震撼的感觉.但
它没有3D环绕立体声系统好. 
   
    3D环绕立体声系统:从八十年代3D的出现到至今,有十几种3D系统投入使用.到现
在有两种技术在多媒体电脑上使用,即Space(空间)均衡器和SRS(Sound Retrieval 
System)声音修正系统.先讲一下Space:它利用音响的效果和仿声学的原理,根据人的耳廓对
声音的感应不同,而且也不增加声道,就得到3D效果,人感觉声音来自各方;SRS:它是完全利
用仿声学的原理和人耳的空间声音的感应不同,对双声道的立体声信号加工处理,尽管声音
来自前方,但人误认为是来自各个方向.这种系统只用两只普通音响就可以,就能有音乐厅那
种震撼的效果,它不加成本,所以很有吸引力. 
   
    准立体声:准立体声声卡的基本概念就是:在录制声音的时候采用单声道,而放
音有时是立体声,有时是单声道。采用这种技术的声卡也曾在市面上流行过一段时间,但
现在已经销声匿迹了。 
   
    四声道环绕:四声道环绕规定了4个发音点:前左、前右,后左、后右,听众则被
包围在这中间。同时还可增加一个低音音箱,以加强对低频信号的回放处理(就是4.1声道
音箱系统)。就整体效果而言,四声道系统可以为听众带来来自多个不同方向的声音环绕,
可以获得身临各种不同环境的听觉感受,给用户以全新的体验。如今四声道技术已经广泛
融入于各类中高档声卡的设计中,成为未来发展的主流趋势。
   
    5.1声道:一些比较知名的声音录制压缩格式,譬如杜比AC-3(Dolby Digital)
、DTS等都是以5.1声音系统为技术蓝本的。其实5.1声音系统来源于4.1环绕,不同之处在
于它增加了一个中置单元。这个中置单元负责传送低于80Hz的声音信号,在欣赏影片时有
利于加强人声,把对话集中在整个声场的中部,以增加整体效果。 
   
    杜比定逻辑技术:杜比定逻辑(Dolby Pro-Logic)是美国杜比实验室研制的,它用
来把声音还原,它有一个很大的特点,就是将四个声道(前后左右)的原始声音进行编码,把它
形成双声道的信号,放声的时候先通过解码器再送给放大器,借助中间环节环绕声音箱,这样
就有临场的环绕立体声效果,使以前的平面声场得到改变. 
   
    DDP电路:DDP(Double Detect and Protect:二重探测与保护),它可以使Space对
输入的信号不再重复处理,同时对声音的频率和方向进行探测,而且自动调整,得到最佳的效
果. 
   
    DSP (Digtal Signal Processor:数字信号处理器):它是一种专用的数字信号处
理器,在当时高档的16位声卡上曾“一展风采”。为高档的声卡实现环绕立体声立下了不
可默灭的功勋。但是,随着新技术的不断发展DSP的矛盾越来越突出,声卡商为了自身的利
益不得不“忍痛割爱”来降低成本。 
   
    HZ 赫兹:用于描述声音振动频率的单位,也称为CPS(Cycles Per Second)每秒
一个振动周期称为1HZ,人耳可听到的音频约为20HZ到20KHZ。
   
    编码和解码:在数字音频技术中,用数字大小来代替声音强弱高低的模拟电压,
并对音频数据进行压缩的过程叫做编码;在重放音乐时,再将压缩的数据还原,称为解码
。 
   
    信噪比 (SNR:Signal to Noise Ratio):它是判断声卡噪声能力的一个重要指
标。用信号和噪声信号的功率的比值即SNR,单位分贝。SNR值越大声卡的滤波效果越好,
一般是大于80分贝。
   
    频率响应 (FR:Frequency Response):它是对声卡的ADC和AC转换器频率响应能
力的一个评价标准。人耳对声音的接收范围是20HZ-20KHZ,因此声卡在这个范围内音频信
号始终要保持成一条直线式的响应效果。如果突起(在声卡资料中是用功率增益来表示)
或下滑(用功率衰减)都是失真的表现.
   
    总谐波失真(THD+N:Total Harmonic Distortion+Noise):THS+N是对声卡是否
保真度的评价指标。它对声卡输入的信号和输出信号的波形的吻合程度进行比较。数值越
低失真度就越小。在这个式子中的“+N”表示了在考虑保真度的同时也对噪声进行了考虑
。 
   
    Direct Sound 3D:源自于Microsoft DirectX的老牌音频API。它的作用在于帮助
开发者定义声音在3D空间中的定位和声响,然后把它交给DS3D兼容的声卡,让它们用各种
算法去实现。定位声音的效果实际上取决于声卡所采用的算法。对不能支持DS3D的声卡,
它的作用是一个需要占用CPU的三维音效HRTF算法,使这些早期产品拥有处理三维音效的能
力。但是从实际效果和执行效率看都不能令人满意。所以,此后推出的声卡都拥有了一个
所谓的“硬件支持DS3D”能力。DS3D在这类声卡上就成为了API接口,其实际听觉效果则要
看声卡自身采用的HRTF算法能力的强弱。
   
    EAX:环境音效扩展,Environmental Audio Extensions,EAX 是由创新和微软联
合提供,作为DirectSound3D 扩展的一套开放性的API;它是创新通过独家的EMU10K1 数字
信号处理器嵌入到SB-LIVE中,来体现出来的;由于EAX目前必须依赖于DirectSound3D,所
以基本上是用于游戏之中。在正常情况下,游戏程序师都是用DirectSound 3D来使硬件与
软件相互沟通,EAX将提供新的指令给设计人员,允许实时生成一些不同环境回声之类的特
殊效果(如三面有墙房间的回声不同于完全封闭房间的回声),换言之,EAX是一种扩展集
合,加强了DirectSound 3D的功能。
   
    A3D:是Aureal Semiconductor开发的一种突破性的新的互动3D定位音效技术,使
用这一技术的应用程序(通常是游戏)可以根据用户的输入而决定音效的变化,产生围绕
听者的3维空间中精确的定位音效,带来真实的听觉体验,而且可以只用两只普通的音箱或
一对耳机在实现,而通过四声道,就能很好的去体现出它的定位效果。
   
    H3D:其实和A3D有着差不多的功效,但是由于A3D的技术是给Aureal 
Semiconductor注册的,所以厂家就只能用H3D来命名,Zoltrix速捷时的AP 6400夜莺,用
的是C-Media CMI8738/C3DX的芯片,不要小看这个芯片,因为它本身可以支持上面所说的H
3D技术、可支持四声道、它本身还带有MODEM的功能。
   
    Sensaura/Q3D:CRL和QSound是主要出售和开发HRTF算法的公司,自己并不推出
指令集。CRL开发的HRTF算法叫做Sensaura,支持包括A3D 1.0和EAX、DS3D在内的大部分主
流3D音频API。并且此技术已经广泛运用于ESS、YAMAHA和CMI的声卡芯片上,从而成为了影
响比较大的一种技术,从实际试听效果来看也的确不错。而QSound开发的Q3D可以提供一个
与EAX相仿的环境模拟功能,但效果还比较单一,与Sensaura大而全的性能指标相比稍逊一
筹。QSound还提供三种其它的音效技术,分别是QXpander、QMSS和2D-to-3D remap。其中Q
Xpander是一种立体声扩展技术;QMSS是用于4喇叭模式的多音箱环绕技术,可以把立体声
扩展到4通道输出,但并不加入混响效果。2D-to-3D remap则是为DirectSound3D的游戏而
设,可以把立体声的数据映射到一个可变宽度的3D空间中去,这个技术支持使用Q3D技术的
声卡。
   
    IAS(Interactive Around-Sound):从上面谈到的各种API和技术看各有特点,它
们有的相互兼容、有的却水火不容。对于游戏开发者来说,为了让所有的用户都满意,很
多时候必须针对不同的系统和API编写多套代码,这是一件十分麻烦的事情。如果又有新的
音频技术出现,开发者就又要再来一次。IAS就是针对这个麻烦而来的。IAS是Extreme 
Audio Re-ality,Inc(EAR)公司在开发者和硬件厂商的协助下开发出来的专利音频技术,这
个技术能测试系统硬件,管理所有的音效平台需求,从而允许开发者只写一次,即能随处
运行。IAS为音效设计者管理所有的音效资源,提供了DS3D支持和其它环绕声的执行。这样
,开发者就可以腾出更多的精力去创作真实的3D音效,而无须为兼容性之类的问题担心。
   
    HRTF:是一种音效定位算法,它的实际作用在于欺骗我们的耳朵。简单说这就是
个头部反应传送函数(Head-Response Transfer Function)。要具体点呢,可以分成几个
主要的步骤来描述其功用。 第一步:制作一个头部模型并安装一支麦克风到耳膜的位置;
 第二步:从固定的位置发出一些声音; 第三步:分析从麦克风中得到声音并得出被模型
所改变的具体数据; 第四步:设计一个音频过滤器来模仿那个效果; 第五步:当你需要
模仿某个位置所发出的声音的时候就使用上述过滤器来模仿即可。 过滤器的回应就被认为
是一个HRTF,你需要为每个可能存在声源的地方来设置一个HRTF。其实我们并不需要无限
多个HRTF。这里的原因也很简单,我们的大脑并不能如此精确。对于从我们的头部为原点
的半球形表面上大约分布1000个这样的函数就足够了,而另一半应该是对称的。至于距离
感应该由回响、响度等数据变化来实现。 
   
    声卡外置接口:
   -Joystick/MIDI:标准15针D型接口,支持游戏杆和MIDI设备 
   
   -Line Out 1: 前置扬声器或立体声耳机(32欧姆),除两个简化版(Value和数码
版)外,SB Live!系列均为镀金模拟输出接口。 
   
   -Line Out 2:后置扬声器,不支持耳机 
   
   -Microphone In:外置模拟式麦克风,没有电磁干扰声 
   
   -Line In:模拟式线输入 内置接口 
   
   -TAD:TAD(Telephone Answering Device,电话应答设备),如果你有一个进行自
动应答的Modem,可连接它来作为更完整的多媒体系统。 
   
   -CD Audio:CD音频接口,可以通过连在声卡上的扬声器播放CD音乐
   
   -AUX:连接其它内置设备的接口,如:TV/FM调谐卡,MPEG解码卡,MIDI专用卡
   
   -I2S:缩放视频数字输入,用于创新的PC-DVD数字混音/环绕系统
   
   -S/PDIF:S/PDIF(Sony/Philips Digital InterFace):索尼和飞利浦数字接口英文
缩写,是由SONY公司与 PHILIPS公司联合制定的)(民用)、 AES/EBU(专业)接口格式。
一般的数字音源都会有DIGITAL OUTPUT(数字输出)的端子,便于使用者外接品质较好的DA
C(数模转换器)来提升音质或者和其它音响设备接驳。它可以避免模拟连接所带来的额外
信号,减少噪音,并且可以减少模数数模转换和电压不稳引起的信号损失。由于它能以20b
it采样音频,所以能在一个高精度的数字模数下,维持和处理音频信号。S/PDIF使得整个
系统保持较高的品质,所以采用了S/PDIF的SB LIVE在保真度、连通性和创新性方面超越了
许多家庭立体声系统。而根据数据流的传输形式S/PDIF又可细分为以下两种形式: 一、光
纤线TOSLINK;二、同轴线 Coaxial。
   
   -Microphone:连接内部麦克风,可输入其它扩展卡输出的声音 
   
   -Modem:连接内置式Modem,你可以使用现有的麦克风/扬声器设置来控制Modem的DSV
D或扬声器。
   
   -Digital I/O Header:AUD_EXT40针接口,用带状电缆连接数字输入/输出子卡,支
持更多的附加设备 数字I/O卡接口 
   
   -Digital DIN:连接Cambridge Soundworks 7.1八扬声器桌面剧院系统 
   
   -SPDIF IN:外置RCA数字输入 
   
   -SPDIF OUT:外置RCA数字输出 
   
   -Mini-DIN MIDI IN:附加的MIDI输入 
   
   -Mini-DIN MIDI OUT:附加的MIDI输出
 
--
┌┈┐┬╮ ╭─┈┈┐ ╭─┈┈╮ ┌─→┈╮  3区-->硬件天地  欢迎您的光临   
┊  └  ↓ ┊  ╭╮┊ ┊ ╭→ ┊ ↓  ┌  ┊ ┌┌┐┐┌──┐┌──┐┌──┐
┊      ┊ ↓  ┈╯┊ │ ╰ ←╯ ┊  ┊┊┊ │││││┌┐││┌┐││┌─┘
↑  ┌  ┊ │  ┌  ↓ │  ┌┐   ┊    ╯┊ │││││┌┐││┌┐┘│┌┘  
└┈┘┴╯ ╰┈┘└┘ └┈┘└┘ └─┈┈╯  \∧/ └┘└┘└┘└┘└──┘

※ 来源:·哈工大紫丁香 bbs.hit.edu.cn·[FROM: 210.46.78.55]
[百宝箱] [返回首页] [上级目录] [根目录] [返回顶部] [刷新] [返回]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:413.295毫秒