·¢ÐÅÈË: champaign (ÔÒ°), ÐÅÇø: ECE
±ê Ìâ: ¸´Ð¡²¨ÔÚͼÏñ±àÂëÖеÄÓ¦ÓÃ
·¢ÐÅÕ¾: ×Ï ¶¡ Ïã (Sat Jan 8 19:02:50 2000), תÐÅ
·¢ÐÅÈË: fangf (·½·½), ÐÅÇø: DSP
±ê Ìâ: ¸´Ð¡²¨ÔÚͼÏñ±àÂëÖеÄÓ¦ÓÃ
·¢ÐÅÕ¾: Òûˮ˼Դվ (Sat Jul 31 22:25:17 1999) , Õ¾ÄÚÐżþ
Èí¼þѧ±¨
JOURNAL OF SOFTWARE
1999Äê µÚ19¾í µÚ3ÆÚ Vol.19 No.3 1999
-------------------------------------------------------------------------------
¸´Ð¡²¨ÔÚͼÏñ±àÂëÖеÄÓ¦ÓÃ
Ðí¸Õ
Õª¡¡Òª¡¡ÌÖÂÛÁ˸´ÖµÐ¡²¨»ùµÄ½â·¨ÒÔ¼°ÏàÓ¦Â˲¨Æ÷×éµÄ¹¹Ôì.´ÓµÃµ½µÄ¸´ÖµÂ˲¨Æ÷×éµÄ½á
¹ûÀ´¿´,ÆäÂ˲¨Æ÷×éµÄʵ²¿¾ßÓÐżÊý³¤µÄ¶Ô³ÆÐÔºÍÏßÐÔÏàλ.ͬʱ,½«¸´Ð¡²¨¶ÔÓ¦µÄÂ˲¨Æ÷
×éºÍÆäËû¼¸ÖÖС²¨ÔÚͼÏñ±àÂëÉÏÀûÓÃÏàͬµÄÁ¿»¯Æ÷½øÐÐÁ˶ԱÈ,¸´Ð¡²¨ÔÚͼÏñѹËõÐÔÄÜÉÏ
ÓнϺõĽá¹û.
¹Ø¼ü´Ê¡¡¸´ÖµÐ¡²¨,С²¨±ä»»,ͼÏñ±àÂë.
ÖÐͼ·¨·ÖÀàºÅ¡¡TP391
Application of Image Coding Using Complex-valued Wavelets
XU Gang
(Institute of Software The Chinese Academy of Sciences Beijing 100080)
Abstract¡¡ The solution on complex-valued wavelet basis and the corresponding
construction of complex-valued filter bank are discussed in this paper, the
real part of the complex-valued filter bank has linear phase, and its length
is even which can be
obtained from the complex-valued filter bank. Furthermore, the complex-valued
filter bank is compared with other real filter using the same quantizer on c
oding of image, the complex-valued filter bank achieves well compressing perf
ormance.
Key words¡¡Complex-valued wavelet, wavelet transform, image coding.
¡¡¡¡Ä¿Ç°,ÓйØС²¨Ó¦ÓÃÓÚͼÏñ±àÂëµÄÎÄÏ׺ܶà.µ«´ÓС²¨»ùµÄ¹Ûµã³ö·¢,ÔÚͼÏñ±àÂëÖÐÖ÷
ÒªÓÐÕý½»ºÍË«Õý½»Ð¡²¨Á½´óÀà.MallatËã·¨£Û1£ÝÊÇС²¨±ä»»µÄºËÐÄ,ÆäËã·¨Öнö½öÓõ½ÁË
С²¨Ëù¶ÔÓ¦µÄÂ˲¨Æ÷×é¶ÔͼÏñ½øÐзֽâºÍÖع¹.ʵÕý½»µÄÂ˲¨Æ÷×éÆäÄÜÁ¿ÊÇÊغãµÄ,µ«ÊÇȱ
·¦ÏßÐÔÏàλ,²¢ÇÒÒªÇóÀû
ÓÃÐźŻòͼÏñ×÷²»Á¬ÐøµÄÖÜÆÚÐԱ߽çÀ©Õ¹,ÔÚÒ»¶¨³Ì¶ÈÉÏʹÖع¹µÄͼÏñÐźÅÒýÈëÁËÈËΪµÄ
¸ßƵ.Ë«Õý½»Â˲¨Æ÷×é¾ßÓÐÏßÐÔÏàλ,²¢ÇÒÔÊÐíÀûÓÃͼÏñ±ß½ç×÷Á¬ÐøµÄÀ©Õ¹,µ«ÊÇÔڱ任Çø
ÓòÖÐÄÜÁ¿ÊDz»ÊغãµÄ.Ä¿Ç°,Òѹ¹Ôì³öºÜ¶àÕý½»ºÍË«Õý½»Â˲¨Æ÷×é£Û2¡«4£Ý,µ«ÊdzöÓÚÂ˲¨
Æ÷×鳤¶È¼°Ñ¹ËõÐÔÄÜÉϵÄ
¿¼ÂÇ,ʹµÃС²¨¶ÔÓ¦µÄÂ˲¨Æ÷×éµÄʹÓñäµÃÊ®·ÖÓÐÏÞ,Òò´Ë,¶ÔÓÚ¸ßÐÔÄÜÂ˲¨Æ÷×éºÍÐÂÒ»Àà
С²¨Â˲¨Æ÷×éµÄÑо¿ÊÇÎÒÃÇÔÚͼÏñѹËõÓ¦ÓÃÖиÐÐËȤµÄÎÊÌâ.±¾ÎÄ´Ó¸´Ð¡²¨¼°Â˲¨Æ÷µÄ¹¹
Ôì¡¢ÐÔÖʺÍÔÚͼÏñ±àÂëÖеÄÓ¦Óõȼ¸¸ö·½Ãæ½øÐÐÂÛÊö,²¢ºÍÆäËû¼¸ÖÖµäÐÍС²¨ÔÚͼÏñѹËõ
»¹ÔÖÊÁ¿ÉϽøÐзÖÎöºÍ±È
½Ï,½á¹û˵Ã÷£¬¸´Ð¡²¨ÔÚͼÏñ±àÂëÖÐÓнϺõÄÐÔÄÜ.
1 ¸´Ð¡²¨ºÍÂ˲¨Æ÷×é
¡¡¡¡L2(R)ÉϵĶà·Ö±æÂÊ·ÖÎöÊDZÕ×Ó¿Õ¼ä(R)µÄÒ»¸öÐòÁÐÇÒ
VjVj+1, Vj={0},=L2(R),
f(x)¡ÊV0f(x-1)¡ÊV0, f(x)¡ÊV0f(2x)¡ÊVj+1,(1)
Ôò´æÔÚÒ»¸öƽ·½¿É»ý³ß¶Èº¯Êý¦Õ¡ÊV0,ʹ£û¦Õ0,k(x)=¦Õ(x-k)£ük¡ÊZ£ýÊÇV0µÄÒ»×éÕý½»»ù,Á
¦Õj,k(x)=2¦Õ(2jx-k), j,k¡ÊZ,(2)
{¦Õj,k}ÊÇ¿Õ¼äVjµÄÒ»×éÕý½»»ù.ÓÉÓÚ¦Õ¡ÊV0V1,Òò´Ë,´æÔÚÒ»¸ö¸´ÊýÐòÁÐ{ak}Âú×ã,ÇÒ
.(3)
¶à·Ö±æÂÊ·ÖÎöµÄÄ¿µÄÔÚÓÚ½«L2(R)·Ö½â³É
,(4)
ÆäÖÐ,×Ó¿Õ¼äWj¶¨ÒåΪVjÔÚVj+1ÉÏÕý½»²¹×Ó¿Õ¼ä:Vj+1=VjWj.¶ÔÓÚÒ»¸ö¸ø¶¨µÄ³ß¶Èj,¿Õ¼äW
jÊÇÓÉÏàÓ¦ÓÚ¶à·Ö±æÂÊ·ÖÎöµÄÕý½»Ð¡²¨»ù¦·j,k(x)=2¦Õ(2jx-k)µÄ¼¯ºÏÀ´Éú³É.ÓÉÓÚ¦·¡ÊW0
V1,Òò´Ë,´æÔÚÒ»¸ö¸´ÊýÐòÁÐ{bk},ʹµÃ
.(5)
ÆäÖÐbk=(-1)k1-k,±£Ö¤¼¯ºÏ£û2¦·j(2jx-k),k¡ÊZ£ýÊÇWjµÄÒ»×éÕý½»»ù.ÔÚͨ³£Çé¿öÏÂ,ÈôÒ»
¸öº¯Êýf(x)¡ÊVjmax,ÔòËü¿ÉÓÃÏÂʽÀ´±íʾ.
(6)
f(x)¡ÊL2(R)µÄÀëÉ¢¶à·Ö±æÂÊ·ÖÎö¿É±íʾΪ
(7)
ÆäÖÐj0ÊÇÒ»¸ö¸ø¶¨µÄµÍ·Ö±æÂʳ߶È,ϵÊýCjkºÍdjkÊǶà·Ö±æÂÊ·ÖÎö»ùÉϵÄÕý½»Í¶Ó°.
C=¡´¦Õj,k,f¡µ, d=¡´¦·j,k,f¡µ.(8)
ÀûÓÃDaubechiesС²¨£Û1£Ý,ÓÐС²¨¿ìËÙ·Ö½âËã·¨(FWT),ËüÊÇÓɵÍͨͶӰVj¡úVj-1ºÍ¸ßͨͶ
Ó°Vj¡úWj-1×é³É.
(9)
ͬʱ,ÓÉVj-1ºÍWj-1µÄÔªËØÄܹ»×é³ÉÔÚVjÉϵÄÒ»¸öΨһÏòÁ¿,Õâ¸öÖع¹½«ÓÃÄæFWTÀ´ÊµÏÖ:
(10)
¡¡¡¡¶Ô³ÆµÄ¸´Ð¡²¨±ØÐèÂú×ãÒÔÏÂÌõ¼þ:
¡¡¡¡(1) ¦ÕÓнôÖ§³Å:¶ÔÕûÊýJÒªÇó¦ÕÔÚÇø¼ä£Û-J,J+1£ÝÉÏÓнôÖ§³Å,ÇÒ¶Ôk=-J,-J+1,...,
J,J+1,ÓÐak¡Ù0.
¡¡¡¡(2) {¦Õ(x-k)}Õý½»:ÓÉÓÚÎÒÃÇÊÇÓÃDaubechiesС²¨¹¹Ô츴С²¨,Òò´Ë,Õâ¸öÌõ¼þÔںܴó
³Ì¶ÈÉÏÈ¡¾öÓÚDaubechiesС²¨.
¡¡¡¡¶¨Ò壨º¬¸ºÃÝ£©¶àÏîʽ
, ÇÒH(1)=1,(11)
ÆäÖÐzÔÚµ¥Î»Ô²ÉÏ£üz£ü=1.¼¯ºÏ{¦Õ0,k(x),k¡ÊZ}µÄÕý½»ÐÔÄܹ»Í¨¹ýÒÔϵÈʽÀ´ËµÃ÷.
P(z)-P(-z)=z.(12)
ÆäÖÐ,¶àÏîʽP(z)¶¨ÒåΪ
P(z)=zH(z)(z).(13)
¡¡¡¡(3) ʽ(6)±Æ½üµÄ¾«È·ÐÔ:Óɳ߶Ⱥ¯Êý¦Õ¾ö¶¨º¯ÊýµÄÕýÔòÐÔ,¸ù¾Ýʽ(11)ÒªÇóС²¨¾ßÓÐ
J½×Ïûʧ¾Ø,¼´
H¡ä(-1)=H¡å(-1)=...=H(J)(-1)=0.(14)
¡¡¡¡(4) ¶Ô³ÆÐÔ:Õâ¸öÌõ¼þÏ൱ÓÚak=a1-k,²¢ÇÒ¿ÉÒÔд³É
H(z)=zH(z-1).(15)
ÔÚÒÔÉÏ4¸öÌõ¼þÏÂ,LawtonÒÑÖ¤Ã÷Á˶ÔJΪżÊýʱ,¸´Öµº¯Êý¦ÕºÍ¦·ÊÇ´æÔڵģÛ5£Ý.ÆäÇó½â¹ý
³Ì¿ÉÀûÓõÈʽ(12)¡¢(14)ºÍ(15)Çó½â²ÎÊý.ÓɵÈʽ(12),¶¨ÒåÒ»¸ö¶àÏîʽ:
.(16)
ÆäÖÐ
j=0,1,2,...,J.
ÏÔÈ»PJ(z)Âú×ãµÈʽ(12).
¡¡¡¡qJ(z)µÄ2J¸ö¸ùÏÔʾÁËÃ÷ÏԵĶԳÆÐÔ:Ò»¸ö¸ùµÄ¹²éîºÍÄæÒ²ÊÇÆä¸ù.Èç¹ûÈ¡¸ùxk=1,2,.
..,JÔÚµ¥Î»Ô²(£üxk£ü£¼1)ÄÚ²¢ÇÒk=xJ+1-k,Ôò
,(17)
ÇÒµÍͨÂ˲¨Æ÷H(z)Äܹ»Ð´³É
(18)
ÆäÖÐR,R¡äÊÇ{1,2,3,...,J}µÄÁ½¸ö×Ó¼¯.P(z)=zH(z)(z)ƵÆ×µÄÒòʽ·Ö½â˵Ã÷qJ=zJ¦Ñ(z-1
)¦Ñ(z)µ¼ÖÂÔÚRºÍR¡äÉϵÄÒÔÏÂÏÞÖÆÌõ¼þ
k¡ÊRkR¡ä.(19)
Æä¸ùµÄÕâһѡÔñÍêÈ«Âú×ã(1),(2)ºÍ(3)µÄÌõ¼þ.µ±R={1,2,3,...,J}ºÍR¡ä={/}ÏàÓ¦ÓÚÓÃn=
2J+2µÄDaubechies·½·¨À´µÃµ½Æä½âʱ,¶Ô³ÆÐÔÌõ¼þ(4)µÄ²¹³ä¶¨ÒåΪµÈʽ(19)Çó½âµÄÒ»¸ö×Ó
¼¯,ËüÏàÓ¦ÓÚÒÔÏÂÏÞÖÆÌõ¼þ
k¡ÊRJ-k+1¡ÊR¡ä ÇÒ kR¡ä.(20)
¶ÔÓÚJµÄÈκÎżÊýÖµ,ÕâÏ൱ÓÚÔÚ¡°DaubechiesС²¨¡±£¨2J¸ö¸´µÄºÍʵµÄÔªËØ£©Ô¼¯É϶¨Òå
ÁË2¸´Êý½âµÄÒ»¸ö×Ó¼¯(×¢ÒâÒ»¸ö½âµÄ¸´Êý¹²éîÒ²ÊÇÒ»¸ö½â).
¡¡¡¡¿¼ÂÇÒ»¸ö½âµÄÌØÀý,Ëü¶ÔÓ¦ÒÔϸùµÄÑ¡Ôñ:
R={1,3,5,...,2k+1,...,J-1}, R¡ä={2,4,...,2k,...,J},
ÕâÃ÷ÏÔÂú×ã(20)ʽ.Òò´Ë,¸´³ß¶Èº¯ÊýºÍ¸´Ð¡²¨Äܹ»Ð´³É
¦Õ(x)=h(x)+ig(x), ¦·(x)=w(x)+iv(x),
ÆäÖÐh,g,wºÍv¶¼ÊÇʵº¯Êý.±í1ÖÐ(a)¡¢(b)¡¢(c)¸ø³öÁËÆäµÄÂ˲¨Æ÷×éϵÊý.
±í1 ¸´¶Ô³ÆÂ˲¨Æ÷×é(ÆäÖÐak=a1-k)
k Re£Ûak£Ý Im£Ûak£Ý k Re£Ûak£Ý Im£Ûak£Ý k Re£Ûak£Ý Im£Ûak£Ý
1 0.662912 0.171163 1 0.643003 0.182852 1 0.678892 0.0181398
2 0.110485 -0.085581 2 0.151379 -0.094223 2 0.134037 -0.0508013
3 -0.066291 -0.085581 3 -0.080639 -0.117947 3 -0.119820 -0.0273029
¡¡
4 -0.017128 0.008728 4 -0.012946 0.0341596
5 0.010492 0.020590 5 0.032145 0.0270322
¡¡
6 -0.000417 0.0009268
7 -0.004785 -0.0021542
(a) J=2 (b) J=4 (c) J=8
¡¡¡¡»ùÓÚ¶þάС²¨±ä»»,¿ÉÒÔÓÃÁ½¸ö¶à³ß¶È¿Õ¼äVjµÄÕÅÁ¿»ýÀ´¹¹Ôì¶þά¶à³ß¶È·ÖÎö.ÏêϸµÄ
¶þάС²¨±ä»»Ëã·¨¿ÉÒԲο¼ÎÄÏ×£Û1£Ý.
2 С²¨ºÍͼÏñ±àÂë
2.1 Â˲¨Æ÷µÄÉè¼ÆºÍÑ¡Ôñ
¡¡¡¡Ç°ÃæÎÒÃÇÒÑÐðÊö¹ý,ÔÚС²¨±ä»»ÖÐʵ¼ÊÉÏÖ»Óõ½ÁËС²¨¶ÔÓ¦µÄÂ˲¨Æ÷×é,Òò´Ë,¶ÔÂ˲¨
Æ÷×éµÄÉè¼ÆºÍÑ¡ÔñÊÇÊ®·ÖÖØÒªµÄ.ÔÚÂ˲¨Æ÷×éµÄÉè¼ÆÖÐÓÐһЩԼÊøÌõ¼þ,ÈçÍêÈ«Öع¹¡¢ÓÐÏÞ
³¤¶ÈºÍÒ»¶¨µÄÕýÔòÐÔµÈ.Â˲¨Æ÷×éµÄÕýÔòÐÔÔÚС²¨±ä»»ºÍÍêÈ«Öع¹Ö®¼äÓÐÖØÒªµÄ¹Øϵ,ËüÔø
¾×÷ΪÆÀ¼ÛÂ˲¨Æ÷×éµÄ
Ò»¸ö±ê×¼¶øÌá³öÀ´,µ«ÊÇ´ÓÎÒÃǵÄʵÑéºÍÎÄÏ×£Û4£Ý¿ÉÒÔ¿´µ½,ÔÚÂ˲¨Æ÷µÄÕýÔòÐÔºÍÖع¹Í¼
ÏñÖÊÁ¿Ö®¼ä½ö½öÓв¿·ÖÏà¹Ø.ÔÚÉè¼ÆºÍÑ¡ÔñÂ˲¨Æ÷ʱ»¹ÓÐÒ»¸öÐèÒª¿¼ÂǵÄÖØÒªÐÔÖÊÊÇÏßÐÔ
Ïàλ,¾ßÓÐÏßÐÔÏàλµÄÂ˲¨Æ÷ÔÚͼÏñ´¦ÀíÖÐÊÇÊ®·ÖÖØÒªµÄ£Û9£Ý,ÕâÒ»µãÏÞÖÆÁ˺ܶàÕý½»ÂË
²¨Æ÷µÄʹÓÃ.µ«ÊÇË«Õý½»ÂË
²¨Æ÷×é¡¢ÑùÌõÂ˲¨Æ÷ºÍ¸´Ð¡²¨Â˲¨Æ÷ÍêÈ«Âú×ãÕâÒ»Ìõ¼þ.Ë«Õý½»Â˲¨Æ÷×é×îÔçÊÇÓÉCohenºÍ
DaubechiesÉè¼ÆµÄ£Û6£Ý£¬²¢ÓÉAntoniniÊ×´ÎÒýÈëͼÏñ±àÂë£Û3£Ý.±¾ÎÄÀûÓÃË«Õý½»Â˲¨Æ÷
×éµÄÄ¿µÄÔÚÓں͸´Ð¡²¨Â˲¨Æ÷½øÐÐͼÏñ±àÂëµÄ¶Ô±È.
¡¡¡¡ÎÒÃÇ¿¼²ìÁ˵Èʽ(1)ÖÐ2J¡Ü28µÄËùÓи´½â,Æä½á¹ûÊÇÓÐ×ÜÊýΪ127¸öÕý½»Â˲¨Æ÷×é,´Óѹ
ËõÐÔÄÜÉÏ¿´,ÓÐЩÂ˲¨Æ÷µÄÐÔÖʲ¢²»ºÃ,´ËÍâ,Â˲¨Æ÷³¤¶ÈÌ«³¤(¡Ý30),Ôö¼ÓÁËÔÚ½øÐÐС²¨±ä
»»Ê±µÄ¼ÆËãÁ¿,ͬʱҲÔö¼ÓÁËÓ¦Óõĸ´ÔÓÐÔ,Òò´ËÎÒÃǸø³öÁ˱í1ÖÐ3ÖÖ¸´Ð¡²¨µÄÂ˲¨Æ÷µÄÖµ
.ÎÄÏ×£Û5£ÝÖ»¸ø³öÁ˱í
1(a)µÄÖµ,²¢Ö»¶ÔһάÐźÅ×÷Á˼òµ¥µÄ½âÊÍ.ÔÚµÚ1½ÚÖÐ,ÓЦ¨(x,y)G(x,y)ºÍ¦·(x,y)¦ÁG(x
,y),ÓÉÓÚ¦ÁÖµ½ÏС,Òò´Ëʵ²¿ÖµÒª±ÈÐ鲿ֵ´óµÃ¶à.ËùÒÔ£¬ÔÚ½øÐÐС²¨±ä»»Ê±ÎÒÃÇÖ»Óõ½ÁË
Â˲¨Æ÷µÄʵ²¿Öµ,Ð鲿ֵµÄÉáÈ¥ËäȻʹÂ˲¨Æ÷µÄÄÜÁ¿ÓÐËùËðʧ,µ«¶ÔÕû·ùͼÏñ¶øÑÔ,±ÈͼÏñ
Á¿»¯Ëù´øÀ´µÄËðʧҪСµÃ
¶à.´ËÍ⣬´ÓÇó½â³öµÄ¸´Â˲¨Æ÷ÖµÀ´¿´,Æ䳤¶ÈΪżÊýÇÒ¾ßÓжԳÆÐÔ,ÕâÒ»µã±ÈÆæÊý³¤Â˲¨
Æ÷ÓиüºÃµÄÐÔÖÊ.
2.2 ͼÏñ±àÂë
¡¡¡¡Ð¡²¨ÔÚͼÏñ±àÂëÖеÄÓ¦ÓÃͨ³£ÓÉÒÔϲ¿·Ö×é³É£º
С²¨±ä»»Á¿»¯ºÍλ·ÖÅäìرàÂë.
С²¨±ä»»ÒÔMallatË㷨ΪºËÐÄ,Æä»ù±¾Ë¼ÏëºÍ½ð×ÖËþ·½°¸£Û7£Ý¼°×Ó´ø±àÂë·½°¸£Û8£ÝÏà½ü
ËÆ,Ëü½«ÊäÈëͼÏñ·Ö½â³É°´²»Í¬Æµ´ø¿í¶È¡¢²»Í¬·Ö±æÂʵÄ×Ó´øͼÏñ,ÿһ²ãÓÐ4¸ö×Ó´øͼÏñ
,ÿ´Î½«4¸ö×Ó´øͼÏñÖеĵÍƵ×Ó´øÔٴηֽâ,µÚk´Î·Ö½âºó£¬Æä×ܵÄ×Ó´øÊýΪ3k+1.ÔÚÒ»¶¨
¾«¶ÈÏ£¬Ð¡²¨Äæ±ä»»Äܹ»
ÍêÈ«Öع¹ÔʼͼÏñ.ΪÁ˵õ½½Ï¸ßµÄѹËõÂÊ,ÐèÒª¶Ô±ä»»ÏµÊý½øÐÐÁ¿»¯´¦Àí.±ä»»ÏµÊý±»Á¿
»¯ÒÔ²úÉú·ûºÅÁ÷,ÿһ±êºÅ¶ÔÓ¦×ÅÌض¨µÄÁ¿»¯½×²ãµÄ±ê¼Ç,ÐÅÏ¢µÄËðʧһ°ãÊÇÔÚÁ¿»¯¼¶ÉÏ.
λ·ÖÅä¼¼Êõͨ³£Óõ½Á¿»¯¼¶ÉÏ,ÔÚС²¨Í¼Ïñ±àÂëÖУ¬ËüÊǶԸ÷¸ö×Ó´ø¶¯Ì¬µØ·ÖÅäÁ¿»¯Î»Êý
À´ÊµÏÖѹËõºÍ×ÔÊÊӦͼÏñ
ÐźÅ,¹ØÓÚλ·ÖÅä¼¼ÊõµÄÏêϸÄÚÈݿɼûÎÄÏ×£Û9£Ý.Á¿»¯ºóµÄ·ûºÅÁ÷ͨ³£Ê¹ÓöþάHuffman±à
Âë,µ«ÊÇ,Ä¿Ç°¹ú¼ÊÉÏÓÃÐÔÄܸü¼ÑµÄËãÊõ±àÂë£Û10£ÝÀ´´úÌæHuffman±àÂë.ÔÚʵÑéÖÐ,ÎÒÃÇÓÃ
µ½µÄÊÇËãÊõ±àÂë.
2.3 ʵÑé½á¹ûºÍ·ÖÎö
¡¡¡¡ÎÒÃÇÀûÓÃ3·ù¹ú¼Ê±ê×¼»Ò¶ÈͼÏñÀ´½øÐÐʵÑé,ËüÃÇÊÇLean,GoldHillºÍBarbara,ÆäͼÏñ
´óСΪ512¡Á512,8b/pixel.ÀûÓü¸ÖÖµäÐÍС²¨¶ÔÓ¦µÄÂ˲¨Æ÷ºÍ¸´Ð¡²¨¶ÔÓ¦µÄÂ˲¨Æ÷½øÐÐͼ
Ïñ±àÂëµÄʵÑé½á¹ûÈç±í2ºÍ±í3Ëùʾ.
±í2 ¼¸ÖÖС²¨¶ÔÓ¦µÄÂ˲¨Æ÷ÔÚ·Ö²ã½á¹¹¾ùÔÈʸÁ¿Á¿»¯ÏµĶԱÈ
С²¨ÀàÐÍ LEAN PSNR GOLDHILL PSNR BARBARA PSNR
Antonini1 34.91 31.82 29.09
Antonini2 35.73 32.05 29.70
Antonini3 18.90 18.94 17.82
Daub4 34.36 31.31 28.13
Daub6 34.75 31.51 28.81
Daub8 34.95 31.40 29.07
Villasenor3 35.77 32.11 29.70
Villasenor5 35.17 31.84 28.91
Complex2 27.64 28.69 25.57
Complex4 26.07 27.50 24.37
Complex8 35.25 31.93 29.95
±í3 ¼¸ÖÖС²¨¶ÔÓ¦µÄÂ˲¨Æ÷ÔÚÀàËÆÁãÊ÷Á¿»¯ÏµĶԱÈ
С²¨ÀàÐÍ LEAN PSNR GOLDHILL PSNR BARBARA PSNR
Antonini1 35.40 32.12 28.09
Antonini2 36.08 32.56 29.70
Antonini3 17.95 19.07 17.70
Daub4 34.62 31.90 28.36
Daub6 35.19 31.94 28.75
Daub8 35.37 32.12 28.94
Villasenor3 35.92 32.63 29.57
Villasenor5 35.68 32.76 29.00
Complex2 27.63 28.62 25.34
Complex4 26.05 27.42 24.26
Complex8 35.43 32.39 29.92
¡¡¡¡ÔÚÎÒÃǵÄʵÑéÖÐ,ÀëɢС²¨±ä»»µÄ²ãÊýÊÇ5,ÆäÉ趨µÄѹËõ±ÈΪ16:1.Antonini1,Anton
ini2ºÍAntonini3ΪAntoniniÔÚÎÄÏ×£Û3£ÝÖиø³öµÄË«Õý½»Â˲¨Æ÷×é.Daub4,Daub6ºÍDaub8
ΪDaubechiesÔÚÎÄÏ×£Û2£ÝÖиø³öµÄʵÕý½»Â˲¨Æ÷.Villasenor3ºÍVillasenor5ΪVillase
norÔÚÎÄÏ×£Û4£ÝÖиø³öµÄ
¾ßÓÐżÊý³¤¶ÈË«Õý½»·ÖÎö/×ÛºÏÂ˲¨Æ÷×é.Complex2,Complex4ºÍComplex8Ϊ±¾Îıí1Öиø³ö
µÄ¸´Â˲¨Æ÷×é.´ËÍâ,ÔÚʵÑéÖÐʹÓÃÁËÁ½ÖÖÁ¿»¯²ßÂÔ,Ò»ÖÖÊÇ·Ö²ã½á¹¹¾ùÔȱêÁ¿Á¿»¯,ÁíÒ»ÖÖ
ÊÇÀàËÆÓÚShapiroÁãÊ÷Á¿»¯£Û11£Ý²ßÂÔ,µ«Ëã·¨ÂÔΪ¼òµ¥Ò»Ð©.ÓÉÓÚ±¾ÎĵIJàÖصãÊǸ´Â˲¨
Æ÷µÄÉè¼ÆºÍ±àÂë½á¹û,Òò
´Ë,Á½ÖÖÁ¿»¯Ëã·¨½«ÁíÎÄÐðÊö.¶ÔÓÚÖع¹Í¼ÏñµÄÖÊÁ¿,ÎÒÃDzÉÓñê×¼µÄPSNR¼ÆËã·½·¨.
¡¡¡¡´ÓÎÒÃǵÄʵÑé½á¹ûÀ´¿´,DaubechiesС²¨¶ÔÓ¦µÄʵÕý½»Â˲¨Æ÷Öع¹Í¼ÏñµÄPSNRÖµ¶Ô3·ù
ͼÏñÀ´Ëµ,Æä½á¹û²îÒì²»´ó.Daub8µÄ×ÛºÏÐÔÂÔºÃÒ»µã,µ«ÊÇDaubechiesС²¨²»¾ßÓжԳÆÐÔ,
²¢ÇÒÆä¶ÔÓ¦µÄʵÂ˲¨Æ÷²»¾ßÓÐÏßÐÔÏàλ.AntoniniµÄ3×éÂ˲¨Æ÷´¦ÀíͼÏñµÄ½á¹ûÓнϴóµÄ²»
ͬ,ÆäÖÐAntonini3µÄ½á
¹ûÊDz»ÄÜÁîÈËÂúÒâµÄ,¶øAntonini1ºÍAntonini2ÓкܺõĽá¹û.Antonini3Â˲¨Æ÷ÊÇÓÃBurt
µÄ½ð×ÖËþÊý¾Ý£Û7£Ý¼ÆËã³öÀ´µÄ·ÖÎö/×ÛºÏÂ˲¨Æ÷×é,µ«ÊÇAntonini2ÊǵäÐ͵ÄË«Õý½»Â˲¨Æ÷
×é.Ä¿Ç°,ÕâÖÖ7/9´øË«Õý½»Â˲¨Æ÷×éÔÚС²¨Í¼Ïñ±àÂëÖйãΪӦÓÃ,¿ÉÒÔ˵ËüÊǾßÓÐ×î¼ÑÐÔÄÜ
µÄÂ˲¨Æ÷×é.Villasenor
3ºÍVillasenor5Ò²ÓнϺõĽá¹û,Ëù²»Í¬µÄÊÇ,VillasenorµÄ·ÖÎö/×ÛºÏÂ˲¨Æ÷µÄ³¤¶ÈͬΪ
żÊý,¶øAntoniniµÄ·ÖÎö/×ÛºÏÂ˲¨Æ÷µÄ³¤¶ÈͬΪÆæÊý,Ïà֮ͬ´¦ÊÇ,ËüÃǶ¼ÊÇË«Õý½»ÇÒ¾ßÓÐ
ÏßÐÔÏàλ.¸´ÖµÂ˲¨Æ÷ComplexËùµÃµ½µÄ½á¹û²îÒì½Ï´ó,ÆäComplex8µÄ½á¹ûÊÇÏ൱²»´íµÄ.¸ù
¾ÝÎÒÃǶÔÆäËû´óÁ¿Í¼Ïñ
µÄ²âÊÔ,Complex8ºÍAntonini2ÓÐÏà½üµÄ½á¹û.µ«ÊÇ£¬Complex8½ö½öÓõ½ÁËÒ»¸öżÊý³¤ÏµÊý
¼¯ºÏÇÒ¾ßÓÐÏßÐÔÏàλ,ÕâÊÇÒ»¸öÊ®·ÖÖØÒªµÄ½áÂÛ.
¡¡¡¡±í2ºÍ±í3µÄʵÑé½á¹ûΪ5²ãÀëɢС²¨±ä»»,¹²µÃµ½10¸ö×Ó´øͼÏñ,ÔÚС²¨Í¼Ïñ±àÂëÖнø
ÐжàÉÙ´ÎÀëɢС²¨·Ö½â²ÅÄÜʹÖع¹µÄͼÏñÖÊÁ¿ÓнϺõĽá¹û£¬ÕâÔںܶàÎÄÏ×Öж¼Ã»ÓоßÌå
ÐðÊö,ÒòΪÕâÓëʹÓÃÂ˲¨Æ÷µÄ³¤¶ÈºÍͼÏñµÄ´óСÓйØ,µ«Í¨³£·Ö½âÔÚ3¡«5²ãÖ®¼ä.ΪÁ˸ü½ø
Ò»²½Á˽âÀëɢС²¨±ä»»µÄ
·Ö½â²ã´ÎºÍÖع¹Í¼ÏñÖÊÁ¿Ö®¼äµÄ¹Øϵ,ÎÒÃǸø³öÁËÔÚ¼¸¸ö·Ö½â²ãÉϵÄͼÏñÖع¹µÄ½á¹û.Èç±í
4Ëùʾ,ÕâÀïÎÒÃÇֻѡÓÃÁËAntonini2 7/9´øË«Õý½»Â˲¨Æ÷ºÍ¸´Â˲¨Æ÷Complex8,ºóÕßÂ˲¨Æ÷
µÄ³¤¶ÈΪ14.
±í4 ²»Í¬·Ö½â²ãÔÚ·Ö²ã½á¹¹¾ùÔȱêÁ¿Á¿»¯ÏµĽá¹û
С²¨ÀàÐÍ LENA PSNR GOLDHILL PSNR BARBARA PSNR
3²ã 4²ã 5²ã 3²ã 4²ã 5²ã 3²ã 4²ã 5²ã
Antonini2 35.31 35.73 35.73 31.97 32.04 32.05 29.52 29.72 29.70
Complex8
¡¡¡¡±í4É趨µÄѹËõ±ÈΪ16:1,Á½ÖÖÂ˲¨Æ÷ÔÚ²»Í¬²ãµÄ½á¹ûÂÔÓб仯,µ«²»Ê®·ÖÃ÷ÏÔ.´ËÍâ,
ÓÉÓÚÎÒÃÇʹÓÃÁËλ·ÖÅäÁ¿»¯¼¼Êõ,Òò´Ë,ͼÏñµÄѹËõ±ÈÊǿɵ÷µÄ,ÎÒÃǸø³öÔÚ²»Í¬Î»ÂÊÏÂCo
mplex8С²¨±àÂë3·ùͼÏñµÄ´¦Àí½á¹û,Èç±í5Ëùʾ.
±í5 ¸´Ð¡²¨Complex8ÔÚ·Ö²ã½á¹¹¾ùÔȱêÁ¿Á¿»¯Ï²»Í¬Î»ÂʵĽá¹û
NAME PSNR RATE(BIT/PIXEL)¡¡
0.10 0.20 0.30 0.40 0.50 0.60 0.70
0.80 0.90 1.00
LENA 28.95 31.61 33.19 34.10 35.27 36.04 36.61 36.81 37.23 37.91
GOLDHILL 27.38 29.15 30.45 31.24 31.94 32.86 33.49 34.23 34.66 35.16
BARBARA 23.70 25.94 26.94 28.61 29.95 30.78 31.75 32.25 33.25 34.04
3 ½á ÂÛ
¡¡¡¡¸´Ð¡²¨Ä¿Ç°ÔÚ¹ú¼ÊÉϵÄÑо¿»¹´¦ÓÚÆ𲽽׶Î,ÌرðÊÇÔÚͼÏñ±àÂëÓ¦ÓÃÖи´Ð¡²¨Ëù³öÏÖ
µÄÎÄÏ×»¹²»¶à.±¾ÎÄÀûÓø´ÖµÂ˲¨Æ÷µÄʵ²¿ÏµÊý½øÐÐС²¨±ä»»,ÕâÒ»µãÔÚͼÏñ±àÂëÖÐÊǺÜÖØ
ÒªµÄ.¸´Â˲¨Æ÷µÄʵ²¿ÏµÊý¾ßÓÐżÊý³¤µÄ¶Ô³ÆÐÔ,Äܹ»½ÏºÃµØÊÊӦͼÏñѹËõ.´ÓÎÒÃǵÄʵÑé
ÖпÉÒÔ¿´µ½,¸´Â˲¨Æ÷ÖØ
¹¹Í¼ÏñµÄÖÊÁ¿ºÍ×î¼ÑÂ˲¨Æ÷µÃµ½µÄÖع¹Í¼ÏñÖÊÁ¿»ù±¾Ïàͬ.´ËÍâ,¸´Â˲¨Æ÷½ö½öÓõ½ÁËÒ»¸ö
ϵÊý¼¯ºÏ,ÕâºÍË«Õý½»Â˲¨Æ÷Óõ½Á½¸öϵÊý¼¯ºÏÊDz»Í¬µÄ,ÕâÒ»µã¼õÉÙÁ˼ÆËãµÄ¸´ÔÓÐÔ,ÓÐ
ÀûÓÚÓ²¼þʵÏÖ.
¡¡¡¡±¾ÎÄËùµÃµ½µÄ¸´Â˲¨Æ÷ÊÇ´ÓDaubechiesС²¨ÖÐÑÜÉú³öÀ´µÄ,ÕâÒ»µãºÍAntonini¹¹ÔìµÄ
Ë«Õý½»Â˲¨Æ÷£¨ÀûÓÃÑùÌõ£©ÓÐÏàËÆÖ®´¦.²»Í¬Ö®´¦Êǽ«ÊµÂ˲¨Æ÷µÄÉè¼Æ·½·¨À©Õ¹µ½¸´Óò.ÔÚ
С²¨Í¼Ïñ±àÂëÖÐ,С²¨±ä»»Ö»ÊDZàÂëµÄÒ»¸ö×é³É²¿·Ö,ͼÏñÖع¹µÄÖÊÁ¿²»ÄÜÍêÈ«È¡¾öÓÚÂ˲¨
Æ÷µÄÑ¡Ôñ,ÌرðÊǺÍС²¨
±ä»»ºóϵÊýµÄÁ¿»¯²ßÂÔÓкܴóµÄ¹ØÁª,ͬһÂ˲¨Æ÷Óò»Í¬µÄÁ¿»¯Ëã·¨Æä½á¹û»áÓÐËù²»Í¬.Òò
´Ë£¬Ò»¸öÍ걸µÄС²¨Í¼Ïñ±àÂëϵͳӦ¸ÃÊÇÓɸßÐÔÄÜÂ˲¨Æ÷¼Ó×î¼ÑÁ¿»¯Ëã·¨¼°ÏàÓ¦µÄìرàÂë
×é³É.
±¾ÎÄÑо¿µÃµ½Öйú¿ÆѧԺÖصãÏîÄ¿»ù½ð×ÊÖú.×÷ÕßÐí¸Õ,1963ÄêÉú,²©Ê¿ºó,Ö÷ÒªÑо¿ÁìÓòΪ
ÐźźÍͼÏñ´¦Àí.
¡¡¡¡±¾ÎÄͨѶÁªÏµÈË:Ðí¸Õ£¬±±¾©100080,Öйú¿ÆѧԺÈí¼þÑо¿Ëù
×÷Õßµ¥Î»£ºÖйú¿ÆѧԺÈí¼þÑо¿Ëù ±±¾© 100080
¡¡¡¡¡¡¡¡¡¡E-mail: ljf@ox.ios.ac.cn£ö
²Î¿¼ÎÄÏ×
£Û1£ÝMallat S G. A theory for multiresolution signal decomposition: the wavel
et representation. IEEE Transactions on Pattern Analysis and Machine Intellig
ence, 1989,11(7):674¡«693
£Û2£ÝDaubechies I. Orthonormal basis of compactly supported wavelets. Communi
cations on Pure Applied Mathematics, 1988,41(10):909¡«996
£Û3£ÝAntonini M et al. Image coding using wavelet transform. IEEE Transaction
s on Image Processing, 1992,1(2):205¡«220
£Û4£ÝVillasenor J D et al. Wavelet filter evaluation for image compression. I
EEE Transactions on Image Processing, 1995,4(8):1053¡«1060
£Û5£ÝLawton W. Applications of complex valued wavelet transforms to subband d
ecomposition. IEEE Transactions on Signal Processing, 1993,41(12):3566¡«3568
£Û6£ÝCohen A et al. Biorthogonal bases of compactly supported wavelets. Commu
nications on Pure and Applied Mathematics, 1992,51(9):485¡«560
£Û7£ÝBurt P J et al. The Laplacian pyramid as a compact image code. IEEE Tran
sactions on Communications, 1983,31(4):532¡«540
£Û8£ÝWoods J W et al. Subband coding of images. IEEE Transactions on Acoustic
s Speech and Signal Processing, 1986,34(5):1278¡«1288
£Û9£ÝShoham Y et al. Efficient bit allocation for an arbitrary set of quantiz
er. IEEE Transactions on Acoustics Speech and Signal Processing, 1988,36(9):1
445¡«1453
£Û10£ÝWitten I H et al. Arithmetic coding for data compression. Communication
s of ACM, 1987,30(6):520¡«540
£Û11£ÝShapiro J M. Embedded image coding using zerotree of wavelet coefficien
ts. IEEE Transactions on Signal Processing, 1993,41(12):3445¡«3462
£¨1998-03-09Êո壩
--
¸ÐÇéÊÇÒ»¸öÄÑÒÔѱ·þµÄÒ°Âí
ÀíÖÇÈ´ÊÇÒ»¸öÑÏÀ÷µÄÂí·ò
¡ù À´Ô´:£®×Ï ¶¡ Ïã bbs.hit.edu.cn£®[FROM: 202.118.228.139]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
Ò³ÃæÖ´ÐÐʱ¼ä£º211.860ºÁÃë