Algorithm 版 (精华区)
发信人: Lerry (life is waiting...), 信区: Algorithm
标 题: 算法导论(第二版影印版)
发信站: 哈工大紫丁香 (2002年11月09日14:47:07 星期六), 站内信件
算法导论(第二版影印版)
INTRODUCTION TO ALGORITHMS(Second Edition)
出版社:高等教育出版社
译作者:Thomas H.Cormen等著
出版日期:2002年5月
上架时间:2002-07-16
系列名:国外优秀信息科学与技术系列教学用书
定价:68¥
会员价:54.4¥
浏览次数:487 次
读者评价: ★ ★ ★ ★
总得票:11票 本周得票:1票 投一票
每周得票前10位的电脑书将打7.5折优惠 国标编号:
ISBN 7-04-011050-4
条形码:9787040110500
字数:1650千字 印张:75.25
印数: 页数:1180
开本:787*1092 1/16
备注:
放入收藏夹
电脑书 -> 影印版 -> 影印版 |
本书自第一版出版以来,已经成为世界范围内广泛使用的大学教材和专业人员的标准参
考手册。本书全面论述了算法的内容,从一定深度上涵盖了算法的诸多方面,同时其讲
授和分析方法又兼顾了各个层次读者的接受能力。各章内容自成体系,可作为独立单元
学习。所有算法都用英文和伪码描述,使具备初步编程经验的人也可读懂。全书讲解通
俗易懂,且不失深度和数学上的严谨性。第二版增加了新的章节,如算法作用、概率分
析与随机算法、线性编程等,几乎对第一版的各个部分都作了大量修订。
暂无该商品评论!
浏览该商品全部评论 我要评论
Preface
I Foundation
Introduction
1 The Role of Algorithms in Computing
1.1 Algorithms
1.2 Algorithms as a technology
2 Getting Started
2.1 Insertion sort
2.2 Analyzing algorithms
2.3 Designing algorithms
3 Growth of Functions
3.1 Asymptotic notation
3.2 Standard notations and common functions
4 Recurrences
4.1 The substitution method
4.2 The recursion-tree method
4.3 The master method
4.4 Proof of the master theorem
5 Probabilistic Analysis and Randomized Algorithms
5.1 The hiring problem
5.2 Indicator random variables
5.3 Randomized algorithms
5.4 Probabi1istic analysis and further uses of indicator
II Sorting and Order Statistics
Introduction
6 Heapsort
6.1 Heaps
6.2 Maintaining the heap property
6.3 Building a heap
6.4 The heapsort algorithm
6.5 Priority queues
7 Quicksort
7.1 Description of quicksort
7.2 Performance ofquicksort
7.3 A randomized version of quicksort
7.4 Analysis ofquicksort
8 Sorting in Linear Time
8.1 Lower bounds for sorting
8.2 Counting sort
8.3 Radix sort
8.4 Bucket sort
9 Medians and Order Statistics
9.1 Minimum and maximum
9.2 Selection in expected linear time
9.3 Selection in worst-case linear time
III Data Structures
Introduction
10 Elementary Data Structures
10.1 Stacks and queues
10.2 Linked lists
10.3 Implementing pointers and objects
10.4 Representing rooted trees
11 Hash Tables
11.1 Direct-address tables
11.2 Hash tables
11.3 Hash functions
11.4 Open addressing
11.5 Perfect hashing
12 Binary Search Trees
12.1 What is a binary search tree?
12.2 Querying a binary search tree
12.3 Insertion and deletion
12.4 Randoinly built binary search trees
13 Red-Black Thees
13.1 Properties of red-black trees
13.2 Rotations
13.3 Insertion
13.4 Deletion
14 Augmenting Data Structures
14.1 Dynamic order statistics
14.2 How to augment a data structure
14.3 Interval trees
IV Advanced Desthe and Analysis Techniques
Introduction
15 Dynamic Programming
15.1 Assembly--line scheduling
15.2 Matrix-chain multiplication
15.3 Elements of dynamic programming
15.4 Longest common subsequence
15.5 Optimal binary search trees
16 Greedy Algorithms
16.1 An activity-selection problem
16.2 Elements of the greedy strategy
16.3 Huffman codes
16.4 Theoretical foundations for greedy methods
16.5 A task-scheduling problem
17 Amortized Analysis
17.1 Aggregate analysis
17.2 The accounting method
17.3 The potential method
17.4 Dynamic tables
V Advanced Data Structures
Introduction
18 B-Trees
18.1 Definition of B--trees
18.2 Basic operations on B-trees
18.3 Deleting a key from a B--tree
19 Binomial Heaps
19.1 Binomial trees and binomial heaps
19.2 Operations on binomial heaps
20 Fibonacci Heaps
20.1 Structure of Fibonacci heaps
20.2 Mergeable-heap operations
20.3 Decreasing a key and deleting a node
20.4 Bounding the maximum degree
21 Data Structures for Disjoint Sets
21.1 Disjoint--set operations
21.2 Linked-list representation of disjoint sets
21.3 Disjoint--set forests
21.4 Analysis of union by rank with path compression
VI Graph Algorithms
Introduction
22 Elementary Graph Algorithms
22.1 Representations of graphs
22.2 Breadth-first search
22.3 Depth-first search
22.4 Topological sort
22.5 Strongly connected components
23 Minimum Spanning Trees
23.1 Growing a minimum spanning tree
23.2 The algorithms of Kruskal and Prim
24 Single-Source Shortest Paths
24.1 The Bellman-Ford algorithm
24.2 Single-source shortest paths in directed acyclic graphs
24.3 Dijkstra’s algorithm
24.4 Difference constraints and shortest paths
24.5 Proofs of shortest-paths properties
25 All-Pairs Shortest Paths
25.1 Shortest paths and matrix multiplication
25.2 The Floyd-Warshall a1gorithm
25.3 Johnson’s algorithm for sparse graphs
26 Maximum Flow
26.1 Flow networks
26.2 The Ford-Fulkerson method
26.3 Maximum bipartite matching
26.4 Push--relabel algorithms
26.5 The relabel--to-front algorithm
VII Selected Topics
Introduction
27 Sorting Networks
27.1 Comparison networks
27.2 The zero-one principle
27.3 A bitonic sorting network
27.4 A merging network
27.5 A sorting network
28 Matrix Operations
28.1 Properties of matrices
28.2 Strassen’s algorithm for matrix multiplication
28.3 Solving systems of linear equations
28.4 Inverting matrices
28.5 Symmetric positive-definite matrices and least-squares approximation
29 Linear Programming
29.1 Standard and slack forms
29.2 Formulating problems as linear programs
29.3 The simplex algorithm
29.4 Duality
29.5 The initial basic feasible solution
30 Polynomials and the FFT
30.1 Representation of polynomials
30.2 The DFT and FFT
30.3 Efficient FFT implementations
31 Number-Theoretic Algorithms
31.1 E1ementary numbertheoretic notions
31.2 Greatest common divisor
31.3 Modular arithmetic
31.4 Solving modular linear equations
31.5 The Chinese remainder theorem
31.6 Powers of an element
31.7 The RSA public-key cryptosystem
31.8 Primality testing
31.9 Integer factorization
32 String Matching
32.1 The naive string-matching algorithm
32.2 The Rabin-Karp algorithm
32.3 String matching with finite automata
32.4 The Knuth-Morris-Pratt algorithm
33 Computational Geometry
33.1 Line--segment properties
33.2 Determining whether any pair of segments intersects
33.3 Finding the convex hull
33.4 Finding the c1osest pair of points
34 NP-Completeness
34.1 Polynomial time
34.2 Polynomial-time verification
34.3 NP-completeness and reducibility
34.4 NP--completeness proofs
34.5 NP-complete problems
35 Approximation Algorithms
35.1 The vertex-cover problem
35.2 The traveling-salesman problem
35.3 The set-covering problem
35.4 Randomization and linear programming
35.5 The subset-sum problem
VIII Appendix: Mathematical Background
Introduction
A Summations
A.1 Summation formulas and properties
A.2 Bounding summations
B Sets, Etc.
B.1 Sets
B.2 Relations
B.3 Functions
B.4 Graphs
B.5 Trees
C Counting and Probability
C.1 Counting
C.2 Probability
C.3 Discrete random variables
C.4 The geometric and binomial distributions
C.5 The tails of the binomial distribution
Bibliography
Index
--
7、在你出生前,父母并不是像现在这般无趣,他们变成这样,
是因为忙着支付你的开销,为你洗衣服,听你自吹自擂。所以
在拯救被你的父辈破坏的热带雨林之前,先整理好自己的房间。
——比尔·盖茨
※ 来源:·哈工大紫丁香 bbs.hit.edu.cn·[FROM: 218.7.33.243]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:2.510毫秒