Matlab 版 (精华区)
发信人: bage (最近比较烦), 信区: Matlab
标 题: Matlab详细教程(五十七)
发信站: 哈工大紫丁香 (Sun Feb 4 13:06:58 2001), 转信
发信人: finance (淼水), 信区: MathTools
发信站: BBS 水木清华站 (Sun Apr 4 08:24:58 1999) WWW-POST
7.3.1 线性回归
------------------------------------------------------------------------------
--
我们以一简单数据组来说明什么是线性回归。假设有一组数据型态为 y=y(x),其中
x={0, 1, 2, 3, 4, 5}, y={0, 20, 60, 68, 77, 110}
如果我们要以一个最简单的方程式来近似这组数据,则非一阶的线性方程式莫属。先将这
组数据绘图如下
图中的斜线是我们随意假设一阶线性方程式 y=20x,用以代表这些数据的一个方程式。以
下将上述绘图的 MATLAB 指令列出,并计算这个线性方程式的 y 值与原数据 y 值间误差
平方的总合。
>> x=[0 1 2 3 4 5];
>> y=[0 20 60 68 77 110];
>> y1=20*x; % 一阶线性方程式的 y1 值
>> sum_sq = sum(y-y1).^2); % 误差平方总合为 573
>> axis([-1,6,-20,120])
>> plot(x,y1,x,y,'o'), title('Linear estimate'), grid
如此任意的假设一个线性方程式并无根据,如果换成其它人来设定就可能采用不同的线性
方程式;所以我们须要有比较精确方式决定理想的线性方程式。我们可以要求误差平方的
总合为最小,做为决定理想的线性方程式的准则,这样的方法就称为最小平方误差
(least squares error)或是线性回归。MATLAB的polyfit函数提供了从一阶到高阶多项式
的回归法,其语法为polyfit(x,y,n),其中x,y为输入数据组n为多项式的阶数,n=1就是
一阶的线性回归法。polyfit函数所建立的多项式可以写成
从polyfit函数得到的输出值就是上述的各项系数,以一阶线性回归为例n=1,所以只有
二个输出值。如果指令为coef=polyfit(x,y,n),则coef(1)= , coef(2)=,...,coef(n+1)
= 。注意上式对n 阶的多项式会有 n+1 项的系数。我们来看以下的线性回归的示范:
>> x=[0 1 2 3 4 5];
>> y=[0 20 60 68 77 110];
>> coef=polyfit(x,y,1); % coef 代表线性回归的二个输出值
>> a0=coef(1); a1=coef(2);
>> ybest=a1*x+a0; % 由线性回归产生的一阶方程式
>> sum_sq=sum(y-ybest).^2); % 误差平方总合为 356.82
>> axis([-1,6,-20,120])
>> plot(x,ybest,x,y,'o'), title('Linear regression estimate'), grid
------------------------------------------------------------------------------
--
上一页 下一页 讲义大纲
--
行至水穷处,坐看云起时
***********************
菩提本无树,明镜亦非台
本来无一物,何处染尘埃
--
☆ 来源:.哈工大紫丁香 bbs.hit.edu.cn.[FROM: bage.bbs@smth.org]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:2.076毫秒