Matlab 版 (精华区)

发信人: jq (冰城唐三藏), 信区: Matlab
标  题: 第一节:一般性问题
发信站: 哈工大紫丁香 (2002年09月21日08:08:29 星期六), 站内信件

 MathTools FAQ正文


>****************************************************************************
*<
>                        第一节:一般性问题
>****************************************************************************
*<

===================================
1)关于这个FAQ
:#FangQ(Qianqian.Fang@Dartmouth.Edu),2002/6/22, SMTH/MathTools #

        为什么要写这个FAQ呢?简单一点,就是为了避免重复,慢慢积累,
        提高水平。

        简单问题的重复其实是BBS上学术板块的一个老问题,以前就有人提
        过,最近在水木清华的MathTools上lll又提出来,所以决定借鉴国
        外newsgroup的传统,自己动手写中文的FAQ,把那些几年前就在问、
        现在仍然在问的一些老问题全部都收录在这里,给他们画一个句号。
        等版面上没有了这些老问题,自然会有新的、难的问题出来,等这些
        问题又成为FAQ的时候,大家的水平就慢慢提高了。

        不过自己想来,其实这仍然不是长久解决这个问题的办法,这是一个
        学术传统的问题,需要大家去创造这样一种勤奋、踏实的学术大环境
        ,告诉在这样一个环境中参与交流和寻求帮助的人,当你遇到问题,
        首先要有自己钻研的精神,不要轻易地把这样锻炼自己能力的机会给
        否定掉,而去期待或者"恳求"别人的帮助来替自己寻找偷懒的理由,
        然后才是去有效地寻找资料,或者当自己考虑比较成熟的时候在公众
        论坛上提出自己的问题。

        当然,上面主要是对于你本专业的问题而言,要先思考,再提问,但
        如果非专业的,仅仅用一下就不再使用的,不妨去尽早寻求帮助的好。
        
        这个FAQ今后每个月会更新一次,最新的文档地址参见文件头。如果
        有新的问题收录,文档开头会有一个小的更新列表。原有的解答会被
        更详细和正确的解答代替,但原解答的作者信息将继续保存。

        每个问题的答复开头都有一行作者信息,格式为

        :#作者姓名或者ID(联系方式或Email地址),更新日期,发表地址#

        在本FAQ中引用WWW上获得的代码或者文档时,都将作者信息附在
        文档中,以表示对作者的尊重。

        本文档的原则是:欢迎转载到其他BBS或者学术讨论网站,但在转载
        时请将文件头完整保留。如果仅转载文章内个别问题的回复,请将该
        回复的作者信息保留。本文档未经维护人或各问题回复的作者的许可
        ,严禁以商业目的将本文全部或者部分内容出版。本文档的维护人及
        各问题回复的作者具有文章的所有权和最终解释权。

2)什么叫数学工具?
:#FangQ(Qianqian.Fang@Dartmouth.Edu),2002/6/19, BigGreen/MathTools#

        广义的讲,我们可以把数学本身看作一种工具,她是人类认识这个纷
        繁复杂的世界的眼睛和钥匙,数学用量化和逻辑为描述事物的运动变
        化提供了统一的和严密的基础,并通过不断衍生新的数学分支来为描
        述人类已经扩展极大和极小的世界体系提供强大有力的工具。

        狭义的讲,我们这里涉及的"数学工具"除了部分数学理论和算法之外
        ,主要内容为数学软件,即通过使用计算机,进行特定数学计算或者
        数学表述来实现功能的软件。

        再狭义地讲,数学工具是水木清华和BigGreen BBS上两个版面的名字
        ,这里面聚集了很多很多认识的和不认识的热爱数学、使用数学软件
        的朋友,这个FAQ就是献给他们的。

3)数学软件的主要分类有哪些?各有什么特点?
:#FangQ(Qianqian.Fang@Dartmouth.Edu),2002/6/19, BigGreen/MathTools#

        数学软件从功能上分类可以分为通用数学软件包和专业数学软件包,
        通用数学包功能比较完备,包括各种数学、数值计算、丰富的数学函
        数、特殊函数、绘图函数、用户图形届面交互功能,与其他软件和语
        言的接口及庞大的外挂函数库机制(工具箱)。常见的通用数学软件包
        包括Matlab和Mathematica和Maple,其中Matlab以数值计算见
        长,Mathematica和Maple以符号运算、公式推导见长。

        专用数学包包括绘图软件类(MathCAD,Tecplot,IDL,Surfer,Origin, 
        SmartDraw,DSP2000),数值计算类:(Matcom, 
        DataFit,S-Spline,Lindo,Lingo,O-Matrix,Scilab,Octave), 数值计算
        库(linpack/lapack/BLAS/GERMS/IMSL/CXML), 有限元计算类(ANSYS, 
        MARC,PARSTRAN, FLUENT, FEMLAB,FlexPDE,Algor,COSMOS, 
        ABAQUS,ADINA),计算化学
        类(Gaussian98,Spartan,ADF2000,ChemOffice),数理统计类(GAUSS 
        ,SPSS,SAS, Splus), 数学公式排版类(MathType,MikTeX,Scientific 
        Workplace,Scientific Nootbook)

        上述分类比较笼统,很多软件的功能也有交叉,经验和篇幅限制,不
        能逐一而论。

4)什么叫拟合?什么叫插值?二者的区别是什么?
:#FangQ(Qianqian.Fang@Dartmouth.Edu),2002/6/21, BigGreen/MathTools #

        插值和拟合都是函数逼近或者数值逼近的重要组成部分

        他们的共同点都是通过已知一些离散点集M上的约束,求取一个定义
        在连续集合S(M包含于S)的未知连续函数,从而达到获取整体规律的
        目的,即通过"窥几斑"来达到"知全豹"。

        简单的讲,所谓拟合是指已知某函数的若干离散函数值{f1,f2,…,fn},通
        过调整该函数中若干待定系数f(λ1, λ2,…,λ3), 使得该函数与已知点集的
        差别(最小二乘意义)最小。如果待定函数是线性,就叫线性拟合或者
        线性回归(主要在统计中),否则叫作非线性拟合或者非线性回归。表
        达式也可以是分段函数,这种情况下叫作样条拟合。


        而插值是指已知某函数的在若干离散点上的函数值或者导数信息,通
        过求解该函数中待定形式的插值函数以及待定系数,使得该函数在给
        定离散点上满足约束。插值函数又叫作基函数,如果该基函数定义在
        整个定义域上,叫作全域基,否则叫作分域基。如果约束条件中只有
        函数值的约束,叫作Lagrange插值,否则叫作Hermite插值。

        从几何意义上将,拟合是给定了空间中的一些点,找到一个已知形式
        未知参数的连续曲面来最大限度地逼近这些点;而插值是找到一个(
        或几个分片光滑的)连续曲面来穿过这些点。
        
        具体插值拟合的计算参见第二节6/7/9/40的回复.


5)如何生成任意分布的随机变量?
:#FangQ(Qianqian.Fang@Dartmouth.Edu),2002/6/21, BigGreen/MathTools #


        首先要生成一个平均分布的伪随机数a
        最简单的一种算法是同余法:
        y(n+1)=a*y(n) mod M
        其中(M, a) 常见的一组取值为(2^31-1= 2147483647, 7^5=16807),可以
        生成[0~M-1]上的随机数,通过线性变换可以得到0~1上的均匀随机数

        如果你需要产生概率分布函数(PDF)为f(x)的一维随机变量,首先计算
        它的概率累积函数(PCF) F(x)=Integrate[f(t),{t,0,x}],则F^-1(y)既为所需

        的随机变量。其中F^-1为PCF的反函数,y为一个[0~1]上的平均分布随
        机变量。对于复杂的PDF无法求解反函数的,可以在资料上查找"变
        换抽样法"。


6)FFT输入和输出的意义是什么?
:#FangQ(Qianqian.Fang@Dartmouth.Edu),2002/6/21, BigGreen/MathTools #


        我们可以把FFT简单地看作一个变换器,输入N+1个数,输出N+1个数
        ,但他们对应的意义不同,如果把输入当作时域,则输出为频域,表
        怔了其对应域的变化快慢。

        假设输入信号本身的频率为fc(或者说频带宽为fc),被频率为fs的冲击
        串采样(由采样定理,fs >= 2*fc),则变换前的N+1个数字对应的x
        轴为{t0,t1,…tN}={0,Ts,2*Ts,....,N*Ts} (其中Ts为1/fs,为采样周期)

        则变换后的N+1个数对应的x轴变为频率,范围为0~fs,以fs/N为间隔,
        既为频率点{0,fs/N,2*fs/N,……,fs},在matlab中如果用fftshift(fft(data)
)
        ,则变换后对应x轴为-fs/2~fs/2,如果满足采样定理的化,信号频带-fc~fc
        就包含在转换后的频谱里面了,就不会有失真。

        注意:变换后的数字为复数,因为其中包括了幅度的信
        息,abs(fftshift(fft(data)))为幅度,angle(fftshift(fft(data)))为相位


7)我有一组x,y,z值,非规则点阵,如何绘制曲面或者等高线或者插值?
:#FangQ(Qianqian.Fang@Dartmouth.Edu),2002/6/12, SMTH/MathTools #

        1.如果你使用matlab,有如下四种解决办法
          1.1: 
                         tri=delauney(x,y);
                         trimesh(tri,x,y,z); or trisurf(tri,x,y,z);
          1.2: 如果你想得到更加精细和光滑的曲线,而且想绘制coutour
                   则需要用griddata()插值:
                         [xi,yi]=meshgrid(min(x):dx:max(x),min(y):dy:max(y));
                         [zi,xi,yi]=griddata(x,y,z,xi,yi,'cubic');
                         contourf(xi,yi,zi,20);
          1.3: 如果你的matlab安装有PDE Toolbox,可以使用pdeplot(),参见帮助
          1.4: 如果你可以连接国外,可以使用MIT的Kirill K. Pankratov写的SaGA
               工具箱,下载地址在:
        http://www.ai-geostats.org/software/Geostats_software/SAGA.htm
        http://globec.whoi.edu/software/saga/

        2.如果你使用Tecplot

          1.先将三列数据按照顺序保存在一个文本文件中
                data.dat文件格式为
                 x1 y1 z1
                 x2 y2 z2
                 ...
          2. Tecplot菜单File\Load Data file,在左上角选择2D
          3. 选中zone,菜单Data\Triangulate
          4. 双击该zone,将mesh掩藏掉,把contour打开,然后在
                 左上角选择3D
          5. 如果想插值,参见data菜单中Interpolation的帮助

        3.如果你使用Mathematica

          data={{x1,y1,z1},{x2,y2,z2},......};
          fun=Interpolation[data];
          Plot3D[fun[x,y],{x,xmin,xmax},{y,ymin,ymax}];
          ContourPlot[fun[x,y],{x,xmin,xmax},{y,ymin,ymax}];

        当然,其他还有很多绘图工具,有待补充

--
佛说:当你历经九九八十一难以后,你就可以修成正果.                               
  
于是怀着崇拜和虔诚,我不远千里踏上了磨难的历程,                                
  
只为见到那心目中神圣的大雷音寺...... 

※ 来源:·哈工大紫丁香 bbs.hit.edu.cn·[FROM: 202.118.237.39]
[百宝箱] [返回首页] [上级目录] [根目录] [返回顶部] [刷新] [返回]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:211.021毫秒