Philosophy 版 (精华区)
发信人: dogcat (评论员), 信区: Philosophy
标 题: 形而上学(续13)
发信站: 哈工大紫丁香 (2001年06月02日09:25:14 星期六), 站内信件
可当作1看。他们
使1在两方面都成为起点。
但这是不可能的。因为普遍性是由形式或本体以成一,而元素则由物质以成一,或
由部分以成一。两者(数与单位)各可为一——实际上两个单位均各潜在(至少,照他
们所说不同的数由不同种类的单位组成,亦就是说数不是一堆,而各自一个整体,这就
该是这样),而不是完全的实现。他们所以陷入错误的原因是他们同时由数理立场又由
普遍定义出发,进行研究,这样(甲)从数理出发,他们以1为点,当作第一原理;因
为单位是一个没有位置的点。(他们象旁的人也曾做过的那样,把最小的部分按装成为
事物。)于是“1”成为数的物质要素,同时也就先于2;而在2当作一个整数,当作
一个形式时,则1又为后于。然而,(乙)因为他们正在探索普遍性,遂又把“1”表
现为列数形式涵义的一个部分。但这些特性不能在同时属之同一事物。
假如“本1”必须是无定位的单元(因为这除了是原理外,并不异于它1),2是
可区分的,但1则不可区分,1之于“本1”较之于2将更为相切近,但,1如切近于
“本1”,“本1”之于1也将较之于2为相切近;那么2中的各单位必然先于2。然
而他们否认这个;至少,他们曾说是2先创生。
又,假如“本2”是一个整体,“本3”也是一个整体,两者合成为2〈两个整体〉
于是,这个“2”所从产生的那两者又当是何物呢?
章九
因为列数间不是接触而是串联,例如在2与3中的各单位之间什么都没有,人们可
以请问这些于本1是否也如此紧跟着,紧跟着本1的应是2抑或2中的某一个单位。
在后于数的各级事物——线,面,体——也会遭遇相似的迷难。有些人由“大与小”
的各品种构制这些,例如由长短制线,由阔狭制面,由深浅制体;那些都是大与小的各
个品种。这类几何事物之肇始原理〈第一原理〉,相当于列数之肇始原理,各家所说不
同。在这些问题上面,常见有许多不切实的寓言与理当引起的矛盾。(一)若非阔狭也
成为长短,几何各级事物便将互相分离。(但阔狭若合于长短,面将合于线,而体合于
面;还有角度与图形以及类此诸事物又怎样能解释?)又(二)在数这方面同样的情形
也得遭遇;因为“长短”等是量度的诸属性,而量度并不由这些组成,正象线不由“曲
直”组成或体不由平滑与粗糙组成一样。
所有这些观点所遇的困难与科属内的品种在论及普遍性时所遇的困难是共通的,例
如这参于个别动物之中的是否为“意式动物”抑其它“动物”。假如普遍性不脱离于可
感觉事物,这原不会有何困难;若照有些人的主张一与列数皆相分离,困难就不易解决;
这所谓“不易”便是“不可能”。因为当我们想到2中之一或一般数目中的一,我们所
想的正是意式之一抑或其它的一?
于是,有些人由这类物质创制几何量体,另有些人由点来创制,——他们认为点不
是1而是与1相似的事物——
也由其它材料如与“1”不同的“众”来创制;这些原理也得遭遇同样严重的困难。
因为这些物质若相同,则线,面,体将相同;由同样元素所成事物亦必相同。若说物质
不止一样,其一为线之物质,另一为面,又一为体,那么这些物质或为互涵,或不互涵,
同样的结果还得产生;因为这样,面就当或含有线或便自己成了线。
再者,数何能由“单与众”组成,他们并未试作解释;可是不管他们作何解释,那
些主张“由1与未定之2”来制数的人所面对着的诸驳议,他们也得接受。其一说是由
普遍地云谓着的“众”而不由某一特殊的“众”来制数,另一说则由某一特殊的众即第
一个众来制数;照后一说,2为第一个众。所以两说实际上并无重要差别,相同的困难
跟踪着这些理论——由这些来制数,其方法为如何,搀杂或排列或混和或生殖?以及其
它诸问题。在各种疑难之中,人们可以独执这一问题,“假如每一单位为1,1从何来?
当然,并非每个1都是“本1”。于是诸1必须是从“本1”与“众”或众的一部分来。
要说单位是出于众多,这不可能,因为这是不可区分的;由众的一部分来制造1也有许
多不合理处;因为(甲)每一部分必须是不可区分的(否则所取的这一部分将仍还是众,
而这将是可区分的),而“单与众”就不成其为两要素了;因为各个单位不是从“单与
众”创生的。(乙)执持这种主张的人不做旁的事,却预拟了另一个数;因为它的不可
区分物所组成的众就是一个数。
又,我们必须依照这个理论再研究数是有限抑无限的问题。起初似乎有一个众,其
本身为有限,由此“有限之众”与“一”共同创生有限数的诸单位,而另有一个众则是
绝对之众,也是无限之众;于是试问用那一类的众多作为与元一配合的要素?人们也可
以相似地询问到“点”,那是他们用以创制几何量体的要素。因为这当然不是惟一的一
个点;无论如何请他们说明其它各个点各由什么来制成。当然不是由“本点”加上一些
距离来制作其它各点。因为数是不可区分之一所组成,但几何量体则不然,所以也不能
象由众这个要素的不可区分之诸部分来制成一〈单位〉那样,说要由距离的不可区分之
诸部分来制成点。
于是,这些反对意见以及类此的其它意见显明了数与空间量体不能脱离事物而独立。
又,关于数论各家立说的分歧,这就是其中必有错误的表征,这些错处引起了混乱。那
些认为只有数理对象能脱离可感觉事物而独立的人,看到通式的虚妄与其所引起的困惑,
已经放弃了意式之数而转向于数学之数。然而,那些想同时维持通式与数的人假设了这
些原理,却看不到数学数存在于意式数之外,他们把意式数在理论上合一于数学数,而
实际上则消除了数学数;因为他们所建立的一些特殊的假设,都与一般的数理不符。最
初提出通式的人假定数是通式时,也承认有数理对象存在,他是自然地将两者分开的。
所以他们都有某些方面是真确的,但全部而论都不免于错误。他们的立论不相符合而相
冲突,这就证实了其中必有不是之处。错误就在他们的假设与原理。坏木料总难制成好
家具,爱比卡包谟⑥说过,“才出口,人就知道此言有误”。
关于数,我们所提出的问题和所得的结论已足够(那些已信服了的人,可在后更为
之详解而益坚其所信,至于尚不信服的人也就再不会有所信服)。关于第一原理与第一
原因与元素,那些专谈可感觉本体的各家之说,一部分已在我们的物学著述中说过,一
部分也不属于我们现在的研究范围;
但于那些认为在可感觉物体以外,还有其它本体的诸家之说,这必需在讨论过上述
各家以后,接着予以考虑。因为有些人说意式与数就是这类〈超感觉〉本体,而这些要
素就是实在事物的要素与原理,关于这些我们必须研究他们说了些什么,所说的内容器
实义又如何。
那些专主于数而于数又主于数学之数的人,必须在后另论;但是关于那些相信意式
的人,大家可以同时观测他们思想的途径和他们所投入的困惑。他们把意式制成为“普
遍”,同时又把意式当作可分离的“个别”来处理。这样是不可能的,这曾已为之辩明。
那些人既以本体外离于可感觉事物,他们就不得不使那作为普遍的本体又自备有个体的
特性。他们想到了可感觉世界的形形色色,尽在消逝之中,惟其普遍理念离异了万物,
然后可得保存于人间意识之中。我们先已说过苏格拉底曾用定义〈以求在万变中探取其
不变之真理,〉启发了这样的理论,但是他所始创的“普遍”并不与“个别”相分离;
在这里他的思想是正确的。结果是已明白的了,若无普遍性则事物必莫得而认取,世上
亦无以积累其知识,关于意式只在它脱离事物这一点上,引起驳议。可是,他的继承者
却认为若要在流行不息的感觉本体以外建立任何本体,就必需把普遍理念脱出感觉事物
而使这些以普遍性为之云谓的本体独立存在,这也就使它们“既成为普遍而又还是个别”
照我们上述的看法,这就是意式论本身的惩结。
章十
章十
让我们对于相信意式的人提出一个共有的疑难,这一疑难在我们先时列举诸问题时
曾已说明。我们若不象个别事物那样假定诸本体为可分离而独立存在,那么我们就消灭
了我们自己所意想的“本体”;但,我们若将本体形成为可分离的,则它们的要素与它
们的原理该又如何?
假如诸本体不是普遍而是个别的,(甲)实物与其要素将为数相同,(乙)要素也
就不可能得其认识。因为(甲)试使言语中的音节为诸本体,而使它们的字母作为本体
的要素;既然诸音节不是形式相同的普遍,不是一个类名,而各自成为一个个体,则β
α就只能有一个,其它音节也只能各有一个(又他们〈柏拉图学派〉于每一意式实是也
认为各成一个整体)。倘诸音节皆为唯一个体,则组成它们的各部分也将是唯一的;于
是α不能超过一个,依据同样的论点,也不能有多数的相同音节存在,而其它诸字母也
各只能有一个。然而若说这样是对的,那么字母以外就没有别的了,所有的仅为字母而
已。(乙)又,要素也将无从取得其认识,因为它们不是普遍的,而知识却在于认取事
物之普遍性。知识必须依凭于实证和定义,这就是知识具有普遍性的说明;若不是每一
个三角的诸内角均等于两直角,我们就不作这个“三角的诸内角等于两直角”的论断,
若不是“凡人均为动物”,我们也不作这个人是一个动物的论断。但,诸原理若均为普
遍,则由此原理所组成的诸本体亦当均为普遍,或是非本体将先于本体;
因为普遍不是一个本体,而要素或原理却是普遍的,要素或原理先于其所主的事物。
当他们正由要素组成意式的同时,又宣称意式脱离那与之形式相同的本体而为一个
独立实是,所有这些疑难就自然地跟着发生。
但是,如以言语要素为例,若这并不必需要有一个“本α”与一个“本β”而尽可
以有许多α许多β,则由此就可以有无数相似的音节。
依据一切知识悉属普遍之说,事物之诸原理亦当为普遍性而不是各个独立本体,而
实际引致了我们上所述各论点中最大困惑者,便是此说,然此说虽则在某一涵义上为不
合,在另一涵义上讲还是真实的。“知识”类于动字“知”,具有两项命意,其一为潜
能另一为实现。作为潜能,这就是普遍而未定限的物质,所相涉者皆为无所专指的普遍;
迨其实现则既为一有定的“这个”,这就只能是“这个”已经确定的个体了。视觉所见
各个颜色就是颜色而已,视觉忽然见到了那普遍颜色,这只是出于偶然。文法家所考察
的这个个别的α就是一个α而已。假如诸原理必须是普遍的,则由普遍原理所推演的诸
事物,例如在论理实证中,亦必为普遍;若然如此,则一切事物将悉无可分离的独立存
在〈自性〉——亦即一切均无本体。但明显地,知识之一义为普遍,另一义则非普遍。
--
※ 来源:·哈工大紫丁香 bbs.hit.edu.cn·[FROM: hjw123.hit.edu.cn]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:3.534毫秒