Math 版 (精华区)
发信人: llhhxht (绿林好汉), 信区: Math
标 题: 称球问题(第一节)
发信站: 哈工大紫丁香 (Tue Feb 11 12:30:43 2003) , 转信
文章阅读 北大未名站 精华区
------------------------------------------------------------------------------
--
发信人: symplectic (sound-of-silence), 信区: Mathematics
标 题: 称球问题(第一节)
发信站: 北大未名站 (2001年09月04日01:32:37 星期二) , 站内信件
《三思科学》电子杂志
第三期,2001年9月1日
http://www.myscience.com.cn/magazine/200109
称球问题——经典智力题推而广之三
异调
说明
这篇文章试图给出称球问题的一个一般
的和严格的解答。正因为需要做到一般和严
格,就要考虑许多平时遇不到的特别情形,
所以叙述比较繁琐。如果对读者对严格的证
明没有兴趣,可以只阅读介绍问题和约定记
号的第一、第二节,以及第三节末尾27个球
的例子,和第五节13个球和40个球的解法。
事实上所有的技巧都已经表现在这几个例子
里了。
一、问题
称球问题的经典形式是这样的:
“有十二个外表相同的球,其中有一个坏球,它的重量和其它十
一个有轻微的(但是可以测量出来的)差别。现在有一架没有砝码的
很灵敏的天平,问如何称三次就保证找出那个坏球,并知道它比标准
球重还是轻。”
这可能是网上被做过次数最多的一道智力题了。它的一种解法如
下:
将十二个球编号为1-12。
第一次,先将1-4号放在左边,5-8号放在右边。
1.如果右重则坏球在1-8号。
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边。就是说,把1,6,7,8放在左边,5,9,10,11放在右边。
1.如果右重则坏球在没有被触动的1,5号。如果是1号,
则它比标准球轻;如果是5号,则它比标准球重。
第三次将1号放在左边,2号放在右边。
1.如果右重则1号是坏球且比标准球轻;
2.如果平衡则5号是坏球且比标准球重;
3.这次不可能左重。
2.如果平衡则坏球在被拿掉的2-4号,且比标准球轻。
第三次将2号放在左边,3号放在右边。
1.如果右重则2号是坏球且比标准球轻;
2.如果平衡则4号是坏球且比标准球轻;
3.如果左重则3号是坏球且比标准球轻。
3.如果左重则坏球在拿到左边的6-8号,且比标准球重。
第三次将6号放在左边,7号放在右边。
1.如果右重则7号是坏球且比标准球重;
2.如果平衡则8号是坏球且比标准球重;
3.如果左重则6号是坏球且比标准球重。
2.如果天平平衡,则坏球在9-12号。
第二次将1-3号放在左边,9-11号放在右边。
1.如果右重则坏球在9-11号且坏球较重。
第三次将9号放在左边,10号放在右边。
1.如果右重则10号是坏球且比标准球重;
2.如果平衡则11号是坏球且比标准球重;
3.如果左重则9号是坏球且比标准球重。
2.如果平衡则坏球为12号。
第三次将1号放在左边,12号放在右边。
1.如果右重则12号是坏球且比标准球重;
2.这次不可能平衡;
3.如果左重则12号是坏球且比标准球轻。
3.如果左重则坏球在9-11号且坏球较轻。
第三次将9号放在左边,10号放在右边。
1.如果右重则9号是坏球且比标准球轻;
2.如果平衡则11号是坏球且比标准球轻;
3.如果左重则10号是坏球且比标准球轻。
3.如果左重则坏球在1-8号。
第二次将2-4号拿掉,将6-8号从右边移到左边,把9-11号放
在右边。就是说,把1,6,7,8放在左边,5,9,10,11放在右边。
1.如果右重则坏球在拿到左边的6-8号,且比标准球轻。
第三次将6号放在左边,7号放在右边。
1.如果右重则6号是坏球且比标准球轻;
2.如果平衡则8号是坏球且比标准球轻;
3.如果左重则7号是坏球且比标准球轻。
2.如果平衡则坏球在被拿掉的2-4号,且比标准球重。
第三次将2号放在左边,3号放在右边。
1.如果右重则3号是坏球且比标准球重;
2.如果平衡则4号是坏球且比标准球重;
3.如果左重则2号是坏球且比标准球重。
3.如果左重则坏球在没有被触动的1,5号。如果是1号,
则它比标准球重;如果是5号,则它比标准球轻。
第三次将1号放在左边,2号放在右边。
1.这次不可能右重。
2.如果平衡则5号是坏球且比标准球轻;
3.如果左重则1号是坏球且比标准球重;
够麻烦的吧。其实里面有许多情况是对称的,比如第一次称时的
右重和右轻,只需考虑一种就可以了,另一种完全可以比照执行。我
把整个过程写下来,只是想吓唬吓唬大家。
稍微试一下,就可以知道只称两次是不可能保证找到坏球的。如
果给的是十三个球,以上的解法也基本有效,只是要有个小小的改动,
就是在这种情况下,在第一第二次都平衡的时候,第三次还是有可能
平衡(就是上面的第2.2.2步),那么我们可以肯定坏球是13号球,可
是我们没法知道它到底是比标准球轻,还是比标准球重。如果给的是
十四个球,我们会发现无论如何也不可能只称三次,就保证找出坏球。
一个自然而然的问题就是:对于给定的自然数N,我们怎么来解有
N个球的称球问题?
在下面的讨论中,给定任一自然数N,我们要解决以下问题:
⑴找出N球称球问题所需的最小次数,并证明以上所给的最小次数的确
是最小的;
⑵给出最小次数称球的具体方法;
⑶如果只要求找出坏球而不要求知道坏球的轻重,对N球称球问题解决
以上两个问题;
还有一个我们并不是那么感兴趣,但是作为副产品的问题是:
⑷如果除了所给的N个球外,另外还给一标准球,解决以上三个问题。
--
※ 来源:·北大未名站 bbs.pku.edu.cn·[FROM: 130.149.13.23]
------------------------------------------------------------------------------
--
分类讨论区 全部讨论区
--
※ 来源:.哈工大紫丁香 http://bbs.hit.edu.cn [FROM: 218.9.120.96]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:4.625毫秒