Math 版 (精华区)
发信人: llhhxht (绿林好汉), 信区: Math
标 题: 称球问题(第五节)
发信站: 哈工大紫丁香 (Tue Feb 11 12:32:07 2003) , 转信
文章阅读 北大未名站 精华区
------------------------------------------------------------------------------
--
发信人: symplectic (sound-of-silence), 信区: Mathematics
标 题: 称球问题(第五节)
发信站: 北大未名站 (2001年09月04日01:37:45 星期二) , 站内信件
《三思科学》电子杂志
第三期,2001年9月1日
http://www.myscience.com.cn/magazine/200109
称球问题——经典智力题推而广之三
异调
五、四十个球的例子
最后我们来解决一下40个球,没有标准球的问题。我们知道
40 = (34-1)/2
所以我们可以称4次找出坏球,但是因为没有标准球,就不一定能知道
坏球的轻重。
顺便先考虑13个球,另有一标准球的问题。
13 = (33-1)/2
所以称3次可以找出坏球,因为有标准球,我们还可以同时知道坏球的
轻重。
根据上一节的证明过程,这时我们要把这13个球分为3堆:
第一堆:1-5
第二堆:6-9,再加上标准球s
第三堆:10-13
我们把第一和第二堆小球放在天平左右端进行第一次称量。
如果是左边重,那么要么是第一堆1-5号球中有一个是坏球,而且
它比标准球重,要么是第二堆6-9号球中有一个是坏球,那么它比标准
球轻。用结论1来解决的问题,第三节末尾我们处理过27个球的问题,
9个球的问题就是小菜了:
|--右--( 4重)
|--右--(3 ; 4)|--平--( 6轻)
| |--左--( 3重)
|
| |--右--( 8轻)
(1-2,6;3-4,7)|--平--(8 ; 9)|--平--( 5重)
| |--左--( 9轻)
|
| |--右--( 2重)
|--左--(1 ; 2)|--平--( 7轻)
|--左--( 1重)
如果是右边重,那么和上面的情况对称,只要把策略树中的“左”
和“右”互换,“轻”和“重”互换即可。
如果平衡,那么就化为4个球(10-13号)有一个标准球2次称出的
问题。虽然还可以往下照葫芦画瓢地递归一次,不过4个球的情况就太
简单了,所以直接写出策略树:
|--右--(10轻)
|--右--(10;11)|--平--(12重)
| |--左--(11轻)
|
| |--右--(13轻)
(10,11;12,s)|--平--(13; s)|--平--( )
| |--左--(13重)
|
| |--右--(11重)
|--左--(10;11)|--平--(12轻)
|--左--(10重)
把左中右三个分支拼起来我们就得到13个球有一标准球称3次的策
略树:
|--右--( 1轻)
|--右--(1 ; 2)|--平--( 7重)
| |--左--( 2轻)
|
| |--右--( 9重)
|--右--(1-2,6;|--平--(8 ; 9)|--平--( 5轻)
| 3-4,7)| |--左--( 8重)
| |
| | |--右--( 3轻)
| |--左--(3 ; 4)|--平--( 6重)
| |--左--( 4轻)
|
| |--右--(10轻)
| |--右--(10;11)|--平--(12重)
| | |--左--(11轻)
| |
| | |--右--(13轻)
(1-5; |--平--(10,11;|--平--(13; s)|--平--( )
6-9,s)| 12,s)| |--左--(13重)
| |
| | |--右--(11重)
| |--左--(10;11)|--平--(12轻)
| |--左--(10重)
|
| |--右--( 4重)
| |--右--(3 ; 4)|--平--( 6轻)
| | |--左--( 3重)
| |
| | |--右--( 8轻)
|--左--(1-2,6;|--平--(8 ; 9)|--平--( 5重)
3-4,7)| |--左--( 9轻)
|
| |--右--( 2重)
|--左--(1 ; 2)|--平--( 7轻)
|--左--( 1重)
现在可以考虑40个球,无标准球的问题了。根据上一节的证明过
程,我们首先拿掉第40号球,使之变为39个球的问题。然后我们把这
39个球分为3堆:
第一堆:1-13
第二堆:14-26
第三堆:27-39
把第一和第二堆小球放在天平左右端进行第一次称量。
如果是右边重,那么要么是第一堆1-14号球中有一个是坏球,而
且它比标准球重,要么是第二堆15-27号球中有一个是坏球,那么它比
标准球轻。这恰好是第三节末尾我们解决过的例子!这个策略树分支
我们可以完全拷贝过来。
如果是左边重,那么和上面的情况对称,只要把策略树中的“左”
和“右”互换,“轻”和“重”互换即可。
如果平衡,那么问题转化为本节开始的13个球,有一标准球的问
题(可取1号球为标准球),上面的策略树也可拷贝过来,只是要把原
来的1-13号球和这里的27-39号球一一对应(只要把所有的号码加26即
可)。
把左中右三个策略分支合并起来,并考虑到如果所有称量结果都
是平衡的话,则第40号球为坏球的结论。我们就得到了下面的关于称
40个球的巨无霸策略树,它有81片叶子:
|--右--( 1轻)
|--右--(1 ; 2)|--平--( 3轻)
| |--左--( 2轻)
|
| |--右--(18重)
|--右--(1-3; |--平--(17;18)|--平--( 7轻)
| 4-6)| |--左--(17重)
| |
| | |--右--( 4轻)
| |--左--(4 ; 5)|--平--( 6轻)
| |--左--( 5轻)
|
| |--右--(23重)
| |--右--(22;23)|--平--(24重)
| | |--左--(22重)
| |
| | |--右--(26重)
|--右--(1-7, |--平--(19-21;|--平--(25;26)|--平--(27重)
| 15-16;| 22-24)| |--左--(25重)
| 8-14,| |
| 17-18)| | |--右--(20重)
| | |--左--(19;20)|--平--(21重)
| | |--左--(19重)
| |
| | |--右--( 8轻)
| | |--右--(8 ; 9)|--平--(10轻)
| | | |--左--( 9轻)
| | |
| | | |--右--(16重)
| |--左--(8-10; |--平--(15;16)|--平--(14轻)
| 11-13)| |--左--(15重)
| |
| | |--右--(11轻)
| |--左--(11;12)|--平--(13轻)
| |--左--(12轻)
|
| |--右--(27轻)
| |--右--(27;28)|--平--(33重)
| | |--左--(28轻)
| |
| | |--右--(35重)
| |--右--(27-28,|--平--(34;35)|--平--(31轻)
| | 32;| |--左--(34重)
| | 29-30,|
| | 33)| |--右--(29轻)
| | |--左--(29;30)|--平--(32重)
| | |--左--(30轻)
| |
| | |--右--(36轻)
| | |--右--(36;37)|--平--(38重)
| | | |--左--(37轻)
| | |
| | | |--右--(39轻)
(1-13;|--平--(27-31;|--平--(36,37;|--平--(39; 1)|--平--(40坏)
14-26)| 32-35,1)| 38,1)| |--左--(39重)
| | |
| | | |--右--(37重)
| | |--左--(36;37)|--平--(38轻)
| | |--左--(36重)
| |
| | |--右--(30重)
| | |--右--(29;30)|--平--(32轻)
| | | |--左--(29重)
| | |
| | | |--右--(34轻)
| |--左--(27-28,|--平--(34;35)|--平--(31重)
| 32;| |--左--(35轻)
| 29-30,|
| 33)| |--右--(28重)
| |--左--(27;28)|--平--(33轻)
| |--左--(27重)
|
| |--右--(12重)
| |--右--(11;12)|--平--(13重)
| | |--左--(11重)
| |
| | |--右--(15轻)
| |--右--(8-10; |--平--(15;16)|--平--(14重)
| | 11-13)| |--左--(16轻)
| | |
| | | |--右--( 9重)
| | |--左--(8 ; 9)|--平--(10重)
| | |--左--( 8重)
| |
| | |--右--(19轻)
| | |--右--(19;20)|--平--(21轻)
| | | |--左--(20轻)
| | |
| | | |--右--(25轻)
|--左--(1-7, |--平--(19-21;|--平--(25;26)|--平--(27轻)
15-16;| 22-24)| |--左--(26轻)
8-14, | |
17-18)| | |--右--(22轻)
| |--左--(22;23)|--平--(24轻)
| |--左--(23轻)
|
| |--右--( 5重)
| |--右--(4 ; 5)|--平--( 6重)
| | |--左--( 4重)
| |
| | |--右--(17轻)
|--左--(1-3; |--平--(17;18)|--平--( 7重)
4-6)| |--左--(18轻)
|
| |--右--( 2重)
|--左--(1 ; 2)|--平--( 3重)
|--左--( 1重)
--
※ 来源:·北大未名站 bbs.pku.edu.cn·[FROM: 130.149.13.23]
------------------------------------------------------------------------------
--
分类讨论区 全部讨论区
--
※ 来源:.哈工大紫丁香 http://bbs.hit.edu.cn [FROM: 218.9.120.96]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:203.950毫秒