Math 版 (精华区)

发信人: zhili (北侠), 信区: Math
标  题: 3.椭圆曲线
发信站: 哈工大紫丁香 (Sat Nov 29 04:22:56 1997), 转信

 From: smoke.bbs@bbs.rjgc.whu.edu.cn (小烟)
 Date: 14 Jun 1997 09:08:20 GMT

===============================================================================
3 椭圆曲线
 最近的数学进展,最受人注意的结果就是Fermat大定理的证明。Fermat大定理说:方
 程式
                  n     n     n
                 x  +  y  =  z ,n>2
 没有非平凡的整数解(即xyz<>0). 这个传说了300年的结果的证明,最近由
 Princeton大学的教授Andrew J.Wiles(英国数学家)给出。但证明中缺一段,是由
 他的学生Richard Tarlor补充的。因此,Fermat 定理现在已经有了一个完全的证
 明。整个文章发表在最近一期的“Annals of Mathematics"(Prinston大学杂
 志,1996,第一期)整个一期登的是Wiles与Taylor的论文,证明Fermat定理
 (Wiles
 为此同Robert Langlands 获得了1996年的Wolf奖与National Academy
 Science Award in Mathematics).
 
 有意思的是,证明这个定理的关键是椭圆曲线。这是代数数论的一个分支。有以下一则
 故事。英国的大数学家G.H.Hardy(1877-1947)有一天去医院探望他的朋友,印度
 天才数学家S.A.Ramanujan(1887-1920).Hardy 的汽车号是1729。他向
 Ramanujan说,这个数目没有意思。Ramanujan说,不然,这是可以用两种不同方法
 写为2个立方之和的最小的数,如
                         3      3   3      3
                 1729 = 1  +  12 = 9  +  10
 这结果可用椭圆曲线论来证明。
 
 我们知道,要找一个一般方程的解不容易的,而要找一个系数为整数的多项式方程
                 P(x,y) = 0
 (传统上叫Diophantine方程)的整数解更困难。因为普通的解不会是整数,这是
 数论中的一个主要问题。
 
 需要说明的,在Wiles 完成这个证明之前,我有一位在Berkley的朋友Kenneth A.
 Ribet ,他有重要的贡献。他证明了一日本数学家Yutaka Taniyama的某一个关于
 椭圆曲线的假设包含Fermat定理。于是可将Fermat 定理变为一个关于椭圆曲线的
 定理。Wiles根据Ribet的结果又继续经过了许多步骤,以至达到最后的证明。即在
 复平面内得到曲线。由复变函数论知道,复平面内的曲线就成为一个Riemann曲面。
 Riemann曲面为定向曲面,它可以是球,也可以是球加上好多把手。其中有一个最简
 单的情形,就是一个球加上一个把手,即一个环面。环面是个群,且为可交换群。
 所谓椭圆曲线,就是把这个曲线看成复平面内亏格(genus)等于1的复曲线。亏格等于
 1的曲线有一个非常深刻而巧妙的性质。即它上面的点有一个可交换群的构造。两个点
 可以加起来,且有群的性质。这是很重要的性质。椭圆曲线与椭圆无关。原因是,若所
 有曲线的亏格大于1,相当于Riemann曲面有一个Poincare度量,它的曲率等于1,
 所有曲面若其曲率等于—1,则叫做双曲的。亏格等于1的叫椭圆。亏格等于0的叫抛
 物线。椭圆曲线的研究是数论中非常重要,非常有意思的方面。最近一期的科学杂志
 (Science),有位先生写了一篇关于椭圆曲线的文章。椭圆曲线在电报的密码上有应
 用。而中国也有很多人在做代数几何与代数数论方面的工作。最近在黄山有一个国际性
 的,题为“代数几何与代数数论”的会议,由冯克勤先生主持。
 
 从这个定理我们应认识到:高深的数学是必要的。Fermat定理的结论虽然简单,但它
 蕴藏着许多数学的关系,远远超出结论中的数学观念。这些关系日新月异,十分神妙,
 学问之奥,令人拜赏。
 
 我相信,Fermat定理不能用初等方法证明,这种努力是徒劳的。数学是一个整体,一定
 要吸取几千年所有的进步。
 
 
 --
 流水带走光阴的故事,我轻轻地悠唱
 
 --
 ※ Origin: 珞珈山水 ◆ From: 202.114.2.91

--
☆ 来源:.哈工大紫丁香 bbs.hit.edu.cn.[FROM: bbs@bbs.hit.edu.cn]
[百宝箱] [返回首页] [上级目录] [根目录] [返回顶部] [刷新] [返回]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:2.248毫秒