Math 版 (精华区)
发信人: llhhxht (绿林好汉--争取斑竹中...), 信区: Math
标 题: 一元三次方程的故事 (转载)
发信站: 哈工大紫丁香 (Mon Nov 18 09:35:39 2002) , 转信
文章阅读 北大未名站 ○ 数学 讨论区 [Mathematics]
------------------------------------------------------------------------------
--
发信人: paradax (秀树*冬眠中。。。), 信区: Mathematics
标 题: 一元三次方程的故事 (转载)
发信站: 北大未名站 (2002年11月16日15:58:22 星期六), 转信
【 以下文字转载自 Triangle 讨论区 】
【 原文由 selsun 所发表 】
很久以前,人们就解决了一元一次方程与一元二次方程的求解问题。(在初一和
初
二就会学习到有关内容)然而对一元三次方程的求解却使众多的数学家们陷入了困境,许
多
人的努力都以失败而告终。
1494年,意大利数学家帕西奥利对三次方程进行过艰辛的探索后作出极其悲观的结论。他
认
为在当时的数学中,求解三次方程,犹如化圆为方问题一样,是根本不可能的。这种对以
前
失败的悲叹声,却成为16世纪意大利数学家迎接挑战的号角。以此为序曲引出了我们要讲
述
的关于三次方程求解的故事。
故事中第一个出场的人物是一位大学教授,名字叫费罗(Scipionedel Ferro, 1465-1
52
6)。他在帕西奥利作出悲观结论不久,大约在1500年左右,得到了 x3+mx=n这样一类缺项
三
次方程的求解公式。在求解三次方程的道路上,这是一个不小的成功。但出乎我们意料的
是
,他并没有马上发表自己的成果以广为传播自己的成功。相反,他对自己的解法绝对保密
!
这在“不发表即发霉”的今天,真是不可思议之事!
在当时却有其原因。那时一个人若想要保住自己的大学职位,必须在与他人的学术论争中
不
落败。因此,一个重要的新发现就成了一件论争中处于不败之地的有力武器。最后直到其
临
终前,大约1510年左右,他才将自己的这一“杀手锏”传给两个人:他的女婿和他的一个
学
生。他那不学无术的女婿不久就将此抛之脑后了,这样他的学生菲奥尔以这一“杀手锏”
唯
一传人的角色在我们的故事中作为第二个人物露面了。菲奥尔本人的数学才能并不突出,
但
他却因独得费罗秘技而以之炫耀于世。只不过他“独此一家,别无分店”的招牌却没有挂
太
长的时间,一个厉害的挑战者塔塔利亚(Niccolo Tartaglia of Brescia, 1499-1557)出现
在
他的面前。 塔塔利亚
这是我们故事中出场的第三个人物,其原名丰塔纳。1512年,在一次战乱中他被一法
国
兵用刀砍伤脸部,头部口舌多处受伤,其后虽侥幸活命,却留下了口吃的后遗症。于是就
得
了“塔塔利亚”的绰号,意大利语就是“口吃者”的意思。那时他还只有13岁。然而这并
没
有妨碍这位有才能的顽强的少年主要通过自学的方式在数学上达到极高的成就。1534年他
宣
称自己已得到了形如x3+mx2=n这类没有一次项的三次方程的解的方法。不久,菲奥尔就听
到
了挑战者的叫板声,于是我们故事中的两位人物开始碰面了。
二人相约在米兰进行公开比赛。双方各出三十个三次方程的问题,约定谁解出的题目
多
就获胜。塔塔利亚在1535年2月13日,在参加比赛前夕经过多日的苦思冥想后终于找到了多
种
类型三次方程的解法。于是在比赛中,他只用了两个小时的时间就轻而易举地解出了对方
的
所有题目,而对方对他的题目却一题都做不出来。这样他以30:0的战绩大获全胜。这次辉
煌
的胜利为塔塔利亚带来了轰动一时的荣誉,同时也意味着菲奥尔可以在我们的故事中以不
体
面的方式先行退场了。
塔塔利亚为这次胜利所激励,更加热心于研究一般三次方程的解法。到1541 年,终于
完
全解决了三次方程的求解问题。或许是出于与费罗同样的考虑,或许是想在进一步酝酿后
写
一本关于三次方程解法的书的缘故,塔塔利亚没有将自己的成果很快发表。于是,风波骤
起
,本应进入尾声的故事,由于又一个重要人物的出场而被引入了一个完全不同的方向。
卡尔达诺
这位半路杀出来的“程咬金”叫卡尔达诺(Girolamo Cardano, 1501-1576),一位或许
是
数学史中最奇特的人物。他的本行是医生,并且是一个颇受欢迎的医生。但其才能并没有
局
限于此,他在各种知识领域里显示出自己的天赋。除了是一个极好的医生外,他还是哲学
家
和数学家,同时是一个占星术家,并在这些知识领域里都获得了重要成果。他行为有些怪
异
,性好赌博,人品看来也不太佳。在他去世后一百年,伟大的莱布尼兹概括了他的一生:
“
卡尔达诺是一个有许多缺点的伟人;没有这些缺点,他将举世无双。”在我们故事中卡尔
达
诺所要扮演的正是一个将才能与不佳的人品集于一身的不太光彩角色。
在塔塔利亚与菲尔奥的竞赛后不久,卡尔达诺听说了这一故事。在此之前他对三次方
程
求解问题已进行过长时间的研究,却没有得到结果。于是可以想象得到他是多么急于想知
道
塔塔利亚这位解三次方程大师的奇妙技巧。为此他多次向塔塔利亚求教三次方程的解法,
开
始都被塔塔利亚拒绝了。但最终在卡尔达诺立下永不泄密的誓言后,他于1539年3月25日向
卡
尔达诺公开了自己的秘密。故事的转折就这样开始了。
卡尔达诺并没有遵守自己的诺言,1545年他出版《大术》一书,将三次方程解法公诸
于
众,从而使自己在数学界名声鹊起。当然,如果说句公道话的话,卡尔达诺的《大术》一
书
并非完全抄袭之作,其中也包含着他自己独特的创造。然而,这种失信毕竟大大激怒了塔
塔
利亚。1546年他在《各式各样的问题与发明》一书中严斥卡尔达诺的失信行为,于是一场
争
吵无可避免地发生了。一时间,充满火药味的信件在双方之间飞来飞去。1548年8月10日在
米
兰的公开辩论使这场冲突达到白热化。卡尔达诺在这场公开辩论中自己避不出席而是派遣
了
一位学生出马。这个学生的名字叫费拉里(Ludovico Ferrari, 1522-1565),是我们故事中
出
场的最后一个人物。
费拉里15岁时充当卡尔达诺的家仆。主人发现了他的出众才能,接受他为学生和助手
。
18岁时接替卡尔达诺在米兰讲学。其最大的贡献是发现四次方程的一般解法。现在这位以
脾
气暴躁著称且又忠诚的学生要报答老师的知育之恩了。在这场公开的辩论中,塔塔利亚先
以
三次方程的迅速解答取得优势,而费拉里则指摘对方不能解四次方程。于是一场数学论争
逐
渐演变成一场无聊的谩骂。最后客场作战的塔塔利亚以失败而告终,后者宣称了自己胜利
。
由于卡尔达诺最早发表了求解三次方程的方法,因而数学上三次方程的解法至今仍被称为
“
卡尔达诺公式”,塔塔利亚之名反而湮没无闻了。这对塔塔利亚来说似乎是太不公平了。
不
过,这又怎么样呢?在历史上,这类争夺优先权的论战又何止这一桩呢?随着时间的推移
,
多少年过去后,在当时对于个人如此重要的事,对后人而言却不过是“古今多少事,都付
笑
谈中”而已。
附录
塔塔利亚发现的一元三次方程的解法
一元三次方程的一般形式是
x3+sx2+tx+u=0
如果作一个横坐标平移y=x+s/3,那么我们就可以把方程的二次项消去。所以我们只要考虑
形
如
x3=px+q
的三次方程。
假设方程的解x可以写成x=a-b的形式,这里a和b是待定的参数。代入方程,我们就有
a3-3a2b+3ab2-b3=p(a-b)+q
整理得到
a3-b3 =(a-b)(p+3ab)+q
由二次方程理论可知,一定可以适当选取a和b,使得在x=a-b的同时,3ab+p=0。这样上式
就
成为
a3-b3=q
两边各乘以27a3,就得到
27a6-27a3b3=27qa3
由p=-3ab可知
27a6 + p = 27qa3
这是一个关于a3的二次方程,所以可以解得a。进而可解出b和根x。
费拉里发现的一元四次方程的解法
和三次方程中的做法一样,可以用一个坐标平移来消去四次方程一般形式中的三次项
。
所以只要考虑下面形式的一元四次方程:
x4=px2+qx+r
关键在于要利用参数把等式的两边配成完全平方形式。考虑一个参数a,我们有
(x2+a)2 = (p+2a)x2+qx+r+a2
等式右边是完全平方式当且仅当它的判别式为0,即
q2 = 4(p+2a)(r+a2)
这是一个关于a的三次方程,利用上面一元三次方程的解法,我们可以解出参数a。这样原
方
程两边都是完全平方式,开方后就是一个关于x的一元二次方程,于是就可以解出原方程的
根
x。
--
※ 来源:·北大未名站 bbs.pku.edu.cn·[FROM: 218.19.192.72]
--
※ 转载:·北大未名站 bbs.pku.edu.cn·[FROM: 162.105.126.11]
------------------------------------------------------------------------------
--
本讨论区 主题模式 上一篇 下一篇 回文章 回信给作者 同主题展开
--
※ 来源:.哈工大紫丁香 http://bbs.hit.edu.cn [FROM: 218.7.32.148]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:6.484毫秒