Physics 版 (精华区)
发信人: zjliu (秋天的萝卜), 信区: Physics
标 题: 一元3次方程 zz
发信站: 哈工大紫丁香 (Thu Mar 11 13:13:08 2004), 站内信件
发信站: 吉林大学牡丹园站
用高思消元法可解非奇异的线性方程组
#include<iostream.h>
#include<math.h>
int agaus(double a[],double b[],int n);
int main()
{
int i;
static double a[4][4]=
{{0.2368,0.2471,0.2567,1.2571} //系数距阵
,{0.1968,0.2071,1.2168,0.2271}
,{0.1581,1.1675,0.1768,0.1871}
,{1.1161,0.1254,0.1397,0.1490}
};
static double b[4]={1.8471,1.7471,1.6471,1.5471};//存解向量
if (agaus(&a[0][0],b,4)!=0)
for (i=0;i<=3;i++)
cout<<"x"<<"("<<i<<")"<<"= "<<b[i]<<endl;
return 0;
}
int agaus(double *a,double *b,int n)
{
int *js,l,k,i,j,is,p,q;
double d,t;
js =new int[n];
l=1;
for (k=0;k<=n-2;k++)
{ d=0.0;
for (i=k;i<=n-1;i++)
for (j=k;j<=n-1;j++)
{ t=fabs(a[i*n+j]);
if (t>d) { d=t; js[k]=j; is=i;}
}
if (d+1.0==1.0) l=0;
else
{ if (js[k]!=k)
for (i=0;i<=n-1;i++)
{ p=i*n+k; q=i*n+js[k];
t=a[p]; a[p]=a[q]; a[q]=t;
}
if (is!=k)
{ for (j=k;j<=n-1;j++)
{ p=k*n+j; q=is*n+j;
t=a[p]; a[p]=a[q]; a[q]=t;
}
t=b[k]; b[k]=b[is]; b[is]=t;
}
}
if (l==0)
{
delete []js;
return(0);
}
d=a[k*n+k];
for (j=k+1;j<=n-1;j++)
{ p=k*n+j; a[p]=a[p]/d;}
b[k]=b[k]/d;
for (i=k+1;i<=n-1;i++)
{ for (j=k+1;j<=n-1;j++)
{ p=i*n+j;
a[p]=a[p]-a[i*n+k]*a[k*n+j];
}
b[i]=b[i]-a[i*n+k]*b[k];
}
}
d=a[(n-1)*n+n-1];
if (fabs(d)+1.0==1.0)
{
delete []js;
return(0);
}
b[n-1]=b[n-1]/d;
for (i=n-2;i>=0;i--)
{ t=0.0;
for (j=i+1;j<=n-1;j++)
t=t+a[i*n+j]*b[j];
b[i]=b[i]-t;
}
js[n-1]=n-1;
for (k=n-1;k>=0;k--)
if (js[k]!=k)
{ t=b[k]; b[k]=b[js[k]]; b[js[k]]=t;}
delete []js;
return(1);
}
//用牛顿二分法求某些方程某个区间的一个根。
//2x3-4x2+3x-6=0
#include<iostream.h>
#include<math.h>
double newton(double & ,double &);
int main()
{
double low,up;
cout<<"请输入求根的范围"<<endl;
cin>>low>>up;
cout<<newton(low,up)<<endl;;
return 0;
}
double newton(double &x1, double &x2)
{
double x3,y1,y2,y3;
while(fabs(x1-x2)>1e-6)
{
y1=2*x1*x1*x1-4*x1*x1+3*x1-6;
y2=2*x2*x2*x2-4*x2*x2+3*x2-6;
if(y1*y2<0)
{
x3=(x1+x2)/2;
y3=2*x3*x3*x3-4*x3*x3+3*x3-6;
if(y1*y3<0)
x2=x3;
if(y2*y3<0)
x1=x3;
}
}
return x3;
}
--
╔═══════════════════╗
║★★★★★友谊第一 比赛第二★★★★★║
╚═══════════════════╝
※ 来源:.哈工大紫丁香 bbs.hit.edu.cn [FROM: 202.118.229.162]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:3.403毫秒