Physics 版 (精华区)

发信人: zjliu (秋天的萝卜), 信区: Physics
标  题: What is a tensor? q&a
发信站: 哈工大紫丁香 (Mon Aug 11 09:32:40 2003)

To understand the tensor, we must try to understand the physical and mathemati

cal meaning of tensor.
These two webpage will help you to catch the basic meaning of tensor.
----------------------------------------------------------------
Physical meaning:
http://www.physlink.com/Education/AskExperts/ae168.cfm
----------------------------------------------------------------
Question

What is a tensor?

Asked by: Kelly Garmond

Answer

Tensors, defined mathematically, are simply arrays of numbers, or functions, t

hat transform according to certain rules under a change of coordinates. In phy

sics, tensors characterize the properties of a physical system, as is best ill

ustrated by giving some examples (below).
标  题: What is a tensor? q&a
发信站: 饮水思源 (2003年08月11日08:13:47 星期一)

To understand the tensor, we must try to understand the physical and mathemati

cal meaning of tensor.
These two webpage will help you to catch the basic meaning of tensor.
----------------------------------------------------------------
Physical meaning:
http://www.physlink.com/Education/AskExperts/ae168.cfm
----------------------------------------------------------------
Question

What is a tensor?

Asked by: Kelly Garmond

Answer

Tensors, defined mathematically, are simply arrays of numbers, or functions, t

hat transform according to certain rules under a change of coordinates. In phy

sics, tensors characterize the properties of a physical system, as is best ill

ustrated by giving some examples (below).
nts, or it may vary continuously from point-to-point, thereby defining a vecto

r field. In ordinary three dimensional space, a vector has three components (c

ontains three numbers, or three functions of position). In four dimensional sp

ace-time, a vector has four components. And, generally, in an n-dimensional sp

ace, a vector (tensor of order one) has n components. A vector may be thought

of as an array of dimension one. This is because the components of a vector ca

n be visualized as being written in a column or along a line, which is one dim

ensional.

An example of a vector field is provided by the description of an electric fie

ld in space. The electric field at any point requires more than one number to

characterize because it has both a magnitude (strength) and it acts along a de

finite direction, something not shared with a scalar, such as mass. Generally,

 both the magnitude and the direction of the field vary from point-to-point.



As might be suspected, tensors can be defined to all orders. Next above a vect

or are tensors of order 2, which are often referred to as matrices. As might a

lso be guessed, the components of a second order tensor can be written as a tw

o dimensional array.. Just as vectors represent physical properties more compl

ex than scalars, so too matrices represent physical properties yet more comple

x than can be handled by vectors.
nts, or it may vary continuously from point-to-point, thereby defining a vecto

r field. In ordinary three dimensional space, a vector has three components (c

ontains three numbers, or three functions of position). In four dimensional sp

ace-time, a vector has four components. And, generally, in an n-dimensional sp

ace, a vector (tensor of order one) has n components. A vector may be thought

of as an array of dimension one. This is because the components of a vector ca

n be visualized as being written in a column or along a line, which is one dim

ensional.

An example of a vector field is provided by the description of an electric fie

ld in space. The electric field at any point requires more than one number to

characterize because it has both a magnitude (strength) and it acts along a de

finite direction, something not shared with a scalar, such as mass. Generally,

 both the magnitude and the direction of the field vary from point-to-point.



As might be suspected, tensors can be defined to all orders. Next above a vect

or are tensors of order 2, which are often referred to as matrices. As might a

lso be guessed, the components of a second order tensor can be written as a tw

o dimensional array.. Just as vectors represent physical properties more compl

ex than scalars, so too matrices represent physical properties yet more comple

x than can be handled by vectors.

An example of a second order tensor is the so-called inertia matrix (or tensor

) of an object. For three dimensional objects, it is a 3 x 3 = 9 element array

 that characterizes the behavior of a rotating body. As is well known to anyon

e who has played with a toy gyroscope, the response of a gyroscope to a force

along a particular direction (described by a vector), is generally re-orientat

ion along some other direction different from that of the applied force or tor

que. Thus, rotation must be characterized by a mathematical entity more comple

x than either a scalar or a vector; namely, a tensor of order two.

There are yet more complex phenomena that require tensors of even higher order

. For example, in Einstein's General Theory of Relativity, the curvature of sp

ace-time, which gives rise to gravity, is described by the so-called Riemann c

urvature tensor, which is a tensor of order four. Since it is defined in space

-time, which is four dimensional, the Riemann curvature tensor can be represen

ted as a four dimensional array (because the order of the tensor is four), wit

h four components (because space-time is four dimensional) along each edge. Th

at is, in this case, the Riemann curvature tensor has 4 x 4 x 4 x 4 = 256 comp

onents! [Fortunately, it turns out that only 20 of these components are mathem

atically independent of each other, vastly simplifying the solution of Einstei

n's equations].


An example of a second order tensor is the so-called inertia matrix (or tensor

) of an object. For three dimensional objects, it is a 3 x 3 = 9 element array

 that characterizes the behavior of a rotating body. As is well known to anyon

e who has played with a toy gyroscope, the response of a gyroscope to a force

along a particular direction (described by a vector), is generally re-orientat

ion along some other direction different from that of the applied force or tor

que. Thus, rotation must be characterized by a mathematical entity more comple

x than either a scalar or a vector; namely, a tensor of order two.

There are yet more complex phenomena that require tensors of even higher order

. For example, in Einstein's General Theory of Relativity, the curvature of sp

ace-time, which gives rise to gravity, is described by the so-called Riemann c

urvature tensor, which is a tensor of order four. Since it is defined in space

-time, which is four dimensional, the Riemann curvature tensor can be represen

ted as a four dimensional array (because the order of the tensor is four), wit

h four components (because space-time is four dimensional) along each edge. Th

at is, in this case, the Riemann curvature tensor has 4 x 4 x 4 x 4 = 256 comp

onents! [Fortunately, it turns out that only 20 of these components are mathem

atically independent of each other, vastly simplifying the solution of Einstei

n's equations].

Finally, to return to the comment that tensors transform according to certain

rules under a change of coordinates, it should be remarked that other mathemat

ical entities occur in physics that, like tensors, generally consist of multi-

dimensional arrays of numbers, or functions, but that are NOT tensors. Most no

teworthy are objects called spinors. Spinors differ from tensors in how the va

lues of their elements change under coordinate transformations. For example, t

he values of the components of all tensors, regardless of order, return to the

ir original values under a 360-degree rotation of the coordinate system in whi

ch the components are described. By contrast, the components of spinors change

 sign under a 360-degree rotation, and do not return to their original values

until the describing coordinate system has been rotated through two full rotat

ions = 720-degrees!

Answered by: Warren Davis, Ph.D., President, Davis Associates, Inc., Newton, M

A USA

------------------------------------------------------------------
Mathematical meaning:
http://mathworld.wolfram.com/Tensor.html

--
相信我,没错的!
Finally, to return to the comment that tensors transform according to certain

rules under a change of coordinates, it should be remarked that other mathemat

ical entities occur in physics that, like tensors, generally consist of multi-

dimensional arrays of numbers, or functions, but that are NOT tensors. Most no

teworthy are objects called spinors. Spinors differ from tensors in how the va

lues of their elements change under coordinate transformations. For example, t

he values of the components of all tensors, regardless of order, return to the

ir original values under a 360-degree rotation of the coordinate system in whi

ch the components are described. By contrast, the components of spinors change

 sign under a 360-degree rotation, and do not return to their original values

until the describing coordinate system has been rotated through two full rotat

ions = 720-degrees!

Answered by: Warren Davis, Ph.D., President, Davis Associates, Inc., Newton, M

A USA

------------------------------------------------------------------
Mathematical meaning:
http://mathworld.wolfram.com/Tensor.html

--
╔═══════════════════╗
║★★★★★友谊第一  比赛第二★★★★★║
╚═══════════════════╝

※ 来源:.哈工大紫丁香 bbs.hit.edu.cn [FROM: 202.118.229.162]
[百宝箱] [返回首页] [上级目录] [根目录] [返回顶部] [刷新] [返回]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:208.573毫秒