Physics 版 (精华区)

发信人: Rg (RedGardenia), 信区: Physics
标  题: feynman lecturson (1)
发信站: 哈工大紫丁香 (2002年08月15日12:03:59 星期四), 站内信件

             Feynman's Preface

These are the lectures in physics that I gave last year and the year before 
to the
freshman and sophomore classes at Caltech. The lectures are, of course, not
verbatim—they have been edited, sometimes extensively and sometimes less 
so.
The lectures form only part of the complete course. The whole group of 180
students gathered in a big lecture room twice a week to hear these lectures 
and
then they broke up into small groups of 15 to 20 students in recitation 
sections
under the guidance of a teaching assistant. In addition, there was a 
laboratory
session once a week.
The special problem we tried to get at with these lectures was to maintain 
the

interest of the very enthusiastic and rather smart students coming out of 
the 
high
schools and into Caltech. They have heard a lot about how interesting and 
exciting
physics is—the theory of relativity, quantum mechanics, and other modern
ideas. By the end of two years of our previous course, many would be very 
discouraged
because there were really very few grand, new, modern ideas presented
to them. They were made to study inclined planes, electrostatics, and so 
forth,
and after two years it was quite stultifying. The problem was whether or 
not we
could make a course which would save the more advanced and excited student 
by maintaining his enthusiasm.
The lectures here are not in any way meant to be a survey course, but are 
very

serious. I thought to address them to the most intelligent in the class and 
to make
sure, if possible, that even the most intelligent student was unable to 
completely
encompass everything that was in the lectures—by putting in suggestions of ap
plications
of the ideas and concepts in various directions outside the main line of
attack. For this reason, though, I tried very hard to make all the 
statements as
accurate as possible, to point out in every case where the equations and 
ideas fitted
into the body of physics, and how—when they learned more—things would be
modified. I also felt that for such students it is important to indicate 
what 
it is
that they should—if they are sufficiently clever—be able to understand by 
deduction
from what has been said before, and what is being put in as something new.
When new ideas came in, I would try either to deduce them if they were 
deducible,
or to explain that it was a new idea which hadn't any basis in terms of 
things
 they
had already learned and which was not supposed to be provable—but was just
added in.
At the start of these lectures, I assumed that the students knew something 
when
they came out of high school—such things as geometrical optics, simple 
chemistry
ideas, and so on. I also didn't see that there was any reason to make the lect
uresin a definite order, in the sense that I would not be allowed to 
mention something
until I was ready to discuss it in detail. There was a great deal of 
mention of things
to come, without complete discussions. These more complete discussions would
come later when the preparation became more advanced. Examples are the 
discussions
of inductance, and of energy levels, which are at first brought in in a
very qualitative way and are later developed more completely.
At the same time that I was aiming at the more active student, I also wanted
to take care of the fellow for whom the extra fireworks and side 
applications 
are
merely disquieting and who cannot be expected to learn most of the material 
in

the lecture at all. For such students I wanted there to be at least a 
central core or
backbone of material which he could get. Even if he didn't understand 
everything
in a lecture, I hoped he wouldn't get nervous. I didn't expect him to 
understand
everything, but only the central and most direct features. It takes, of 
course, a
certain intelligence on his part to see which are the central theorems and 
central
ideas, and which are the more advanced side issues and applications which 
he may
understand only in later years.
In giving these lectures there was one serious difficulty: in the way the 
course
was given, there wasn't any feedback from the students to the lecturer to 
indicate
how well the lectures were going over. This is indeed a very serious 
difficulty,
and I don't know how good the lectures really are. The whole thing was 
essentially
an experiment. And if I did it again I wouldn't do it the same way—I hope I
don't have to do it again! I think, though, that things worked out—so far 
as 
the
physics is concerned—quite satisfactorily in the first year.
In the second year I was not so satisfied. In the first part of the course, 
dealing
with electricity and magnetism, I couldn't think of any really unique or 
different
way of doing it—of any way that would be particularly more exciting than 
the
usual way of presenting it. So I don't think I did very much in the 
lectures on
electricity and magnetism. At the end of the second year I had originally 
intended
to go on, after the electricity and magnetism, by giving some more lectures 
on the
properties of materials, but mainly to take up things like fundamental 
modes,
solutions of the diffusion equation, vibrating systems, orthogonal 
functions,.
..
developing the first stages of what are usually called "the mathematical 
methods of
physics." In retrospect, I think that if I were doing it again I would go 
back to
that original idea. But since it was not planned that I would be giving 
these 
lectures
again, it was suggested that it might be a good idea to try to give an 
introduction
to the quantum mechanics—what you will find in Volume III.
It is perfectly clear that students who will major in physics can wait 
until their
third year for quantum mechanics. On the other hand, the argument was made
that many of the students in our course study physics as a background for 
their
primary interest in other fields. And the usual way of dealing with quantum
mechanics makes that subject almost unavailable for the great majority of 
students
because they have to take so long to learn it. Yet, in its real applications

especially
in its more complex applications, such as in electrical engineering and 
chemistry
—the full machinery of the differential equation approach is not actually
used. So I tried to describe the principles of quantum mechanics in a way 
which
wouldn't require that one first know the mathematics of partial 
differential e
quations.
Even for a physicist I think that is an interesting thing to try to do—to
present quantum mechanics in this reverse fashion—for several reasons which
may be apparent in the lectures themselves. However, I think that the 
experiment
in the quantum mechanics part was not completely successful—in large part
because I really did not have enough time at the end (I should, for 
instance, have
had three or four more lectures in order to deal more completely with such 
matters
as energy bands and the spatial dependence of amplitudes). Also, I had never
presented the subject this way before, so the lack of feedback was 
particularly
serious. I now believe the quantum mechanics should be given at a later 
time.
Maybe I'll have a chance to do it again someday. Then I'll do it right.
The reason there are no lectures on how to solve problems is because there 
were
recitation sections. Although I did put in three lectures in the first year 
on
 how to
solve problems, they are not included here. Also there was a lecture on 
inerti
alguidance which certainly belongs after the lecture on rotating systems, 
but which
was, unfortunately, omitted. The fifth and sixth lectures are actually due 
to
Matthew Sands, as I was out of town.
The question, of course, is how well this experiment has succeeded. My own
point of view—which, however, does not seem to be shared by most of the 
people
who worked with the students—is pessimistic. I don't think I did very well 
by  the
students. When I look at the way the majority of the students handled the 
problems
on the examinations, I think that the system is a failure. Of course, my 
friends
point out to me that there were one or two dozen students who—very 
surprisingly
—understood almost everything in all of the lectures, and who were quite 
active
in working with the material and worrying about the many points in an 
excited
and interested way. These people have now, I believe, a first-rate 
background in
physics—and they are, after all, the ones I was trying to get at. But 
then, "The
power of instruction is seldom of much efficacy except in those happy 
dispositions
where it is almost superfluous." (Gibbon)
Still, I didn't want to leave any student completely behind, as perhaps I 
did.

I think one way we could help the students more would be by putting more 
hard
work into developing a set of problems which would elucidate some of the 
ideas

in the lectures. Problems give a good opportunity to fill out the material 
of the
lectures and make more realistic, more complete, and more settled in the 
mind
the ideas that have been exposed.
I think, however, that there isn't any solution to this problem of education
other than to realize that the best teaching can be done only when there is 
a direct
individual relationship between a student and a good teacher—a situation 
in which
the student discusses the ideas, thinks about the things, and talks about 
the 
things.
It's impossible to learn very much by simply sitting in a lecture, or even 
by 
simply
doing problems that are assigned. But in our modern times we have so many
students to teach that we have to try to find some substitute for the 
ideal. Perhaps
my lectures can make some contribution. Perhaps in some small place where
there are individual teachers and students, they may get some inspiration 
or some
ideas from the lectures. Perhaps they will have fun thinking them through—or

going on to develop some of the ideas further.
                           RICHARD P. FEYNMAN 

--
※ 来源:·哈工大紫丁香 bbs.hit.edu.cn·[FROM: nlo.hit.edu.cn]
※ 修改:·Rg 於 08月15日12:21:23 修改本文·[FROM: nlo.hit.edu.cn]
[百宝箱] [返回首页] [上级目录] [根目录] [返回顶部] [刷新] [返回]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:22.028毫秒