Physics °æ (¾«»ªÇø)

·¢ÐÅÈË: Rg (RedGardenia), ÐÅÇø: Physics
±ê  Ìâ: chapter five:Time and Distance
·¢ÐÅÕ¾: ¹þ¹¤´ó×϶¡Ïã (2002Äê08ÔÂ16ÈÕ08:35:50 ÐÇÆÚÎå), Õ¾ÄÚÐżþ

5-1 Motion
In this chapter we shall consider some aspects
of the concepts of time and distance.
It has been emphasized earlier that physics,
as do all the sciences, depends on observation.
One might also say that the development
of the physical sciences to their present form
has depended to a large extent on the emphasis
which has been placed on the making of
quantitative observations. Only with quantitative
observations can one arrive at quantitative
relationships, which are the heart of
physics. Many people would like to place the
beginnings of physics with the work done 350
years ago by Galileo, and to call him the first
physicist. Until that time, the study of motion
had been a philosophical one based on
arguments that could be thought up in one’s
head. Most of the arguments had been presented
by Aristotle and other Greek philosophers,
and were taken as ”proven.” Galileo was
skeptical, and did an experiment on motion
which was essentially this: He allowed a ball
to roll down an inclined trough and observed
the motion. He did not, however, just look; he
measured how far the ball went in how long a
time. The way to measure a distance was well
known long before Galileo, but there were no
accurate ways of measuring time, particularly
short times. Although he later devised more
satisfactory clocks (though not like the ones
we know), Galileo’s first experiments on motion
were done by using his pulse to count o
®equal intervals of time. Let us do the same.
We may count o® beats of a pulse as the ball
rolls down the track: ”one .. . two . . .
three .. . four .. . five ... six ... seven . . .
eight...” We ask a friend to make a small mark
at the location of the ball at each count; we
can then measure the distance the ball travelled
from the point of release in one, or two,
or three, etc., equal intervals of time. Galileo
expressed the result of his observations in this
way: if the location of the ball is marked at
1, 2, 3, 4,... units of time from the instant of
Its release, those marks are distant from the
starting point in proportion to the numbers 1,
4, 9, 16, . . . Today we would say the distance
is proportional to the square of the time:
The study of motion, which is basic to all of
physics, treats with the questions: where? and
when?
5-2 Time
Let us consider first what we mean by time.
What is time? It would be nice if we could
find a good definition of time. Webster de-
fines ”a time” as ”a period,” and the latter as
”a time,” which doesn’t seem to be very useful.
Perhaps we should say: ”Time is what
happens when nothing else happens.” Which
also doesn’t get us very far. Maybe it is just
as well if we face the fact that time is one of
the things we probably cannot define (in the
dictionary sense), and just say that it is what
we already know it to be: it is how long we
wait! What really matters anyway is not how
we define time, but how we measure it. One
way of measuring time is to utilize something
which happens over and over again in a regular
fashionsomething which is periodic. For
example, a day. A day seems to happen over
and over again. But when you begin to thinkabout
it, you might well ask: ”Are days periodic;
are they regular? Are all days the same
length?” One certainly has the impression that
days in summer are longer than days in winter.
Of course, some of the days in winter
seem to get awfully long if one is very bored.
You have certainly heard someone say, ”My,
but this has been a long day!” It does seem,
however, that days are about the same length
on the average. Is there any way we can test
whether the days are the same lengtheither
from one day to the next, or at least on the average?
One way is to make a comparison with
some other periodic phenomenon. Let us see
how such a comparison might be made with an
hour glass. With an hour glass, we can ”create
”a periodic occurrence if we have someone
standing by it day and night to turn it
over whenever the last grain of sand runs out.
We could then count the turnings of the glass
from each morning to the next. We would
find, this time, that the number of ”hours
”(i.e., turnings of the glass) was not the same
each ”day.” We should distrust the sun, or the
glass, or both. After some thought, it might
occur to us to count the ”hours” from noon
to noon. (Noon is here defined not as 12:00
o’clock, but that instant when the sun is at its
highest point.) We would find, this time, that
the number of ”hours” each day is the same.
We now have some confidence that both the
”hour” and the ”day” have a regular periodicity,
i.e., mark o® successive equal intervals
of time, although we have not proved that either
one is ”really” periodic. Someone might
question whether there might not be some omnipotent
being who would slow down the flow
of sand every night and speed it up during
the day. Our experiment does not, of course,
give us an answer to this sort of question. All
we can say is that we find that a regularity
of one kind fits together with a regularity of
another kind. We can just say that we base
our definition of time on the repetition of some
apparently periodic event.
5-3 Short times We should now notice that
in the process of checking on the reproducibility
of the day, we have received an important
by-product. We have found a way of measuring,
more accurately, fractions of a day. We
have found a way of counting time in smaller
pieces. Can we carry the process further, and
learn to measure even smaller intervals of time?
Galileo decided that a given pendulum always
swings back and forth in equal intervals of
time so long as the size of the swing is kept
small. A test comparing the number of swings
of a pendulum in one ”hour” shows that such
is indeed the case. We can in this way mark
fractions of an hour. If we use a mechanical
device to count the swingsand to keep
them goingwe have the pendulum clock of our
grandfathers. Let us agree that if our pendulum
oscillates 3600 times in one hour (and if
there are 24 such hours in a day), we shall
call each period of the pendulum one ”sec-
ond.” We have then divided our original unit
of time into approximately 105 parts. We can
apply the same principles to divide the second
into smaller and smaller intervals. It is,
you will realize, not practical to make mechanical
pendulums which go arbitrarily fast, but
we can now make electrical pendulums, called
oscillators, which can provide a periodic occurrence
with a very short period of swing. In
these electronic oscillators it is an electrical
current which swings to and fro, in a manner
analogous to the swinging of the bob of the
pendulum. We can make a series of such electronic
oscillators, each with a period 10 times
shorter than the previous one. We may ”calibrate
”each oscillator against the next slower
one by counting the number of swings it makes
for one swing of the slower oscillator. When
the period of oscillation of our clock is shorter
than a fraction of a second, we cannot count
the oscillations without the help of some device
which extends our powers of observation.
One such device is the electronbeam oscilloscope,
which acts as a sort of microscope for
short times. This device plots on a fluorescent
screen a graph of electrical current (or voltage)
versus time. By connecting the oscilloscope to
two of our oscillators in sequence, so that it
plots a graph first of the current in one of our
oscillators and then of the current in the other,
we get two graphs like those shown in Fig. 5-
2. We can readily determine the number of
periods of the faster oscillator in one period of
the slower oscillator. With modern electronic
techniques, oscillators have been built with periods
as short as about 10 12 second, and they
have been calibrated (by comparison methods
such as we have described) in terms of our
standard unit of time, the second. With the
invention and perfection of the ”laser,” or light
amplifier, in the past few years, it has become
possible to make oscillators with even shorter
periods than 10 12 second, but it has not yet
been possible to calibrate them by the methods
which have been described, although it
will no doubt soon be possible. Times shorter
than 10 12 second have been measured, but
by a di®erent technique. In e®ect, a di®erent
definition of ”time” has been used. One way
has been to observe the distance between two
happenings on a moving object. If, for example,
the headlights of a moving automobile are
turned on and then o®, we can figure out how
long the lights were on if we know where they
were turned on and o® and how fast the car
was moving. The time is the distance over
which the lights were on divided by the speed.
Within the past few years, just such a technique
was used to measure the lifetime of the
pe-meson. By observing in a microscope the
minute tracks left in a photographic emulsion
in which p-mesons had been created one saw
that a p-meson (known to be travelling at a
certain speed nearly that of light) went a distance
of about 10-7 meter, on the average,
before disintegrating. It lived for only about
10 16 sec. It should be emphasized that we
have here used a somewhat di®erent definition
of ”time” than before. So long as there are no
inconsistencies in our understanding, however,
we feel fairly confident that our definitions are
su±ciently equivalent. By extending our techniquesand
if necessary our definitionsstill further
we can infer the time duration of still
faster physical events. We can speak of the
period of a nuclear vibration. We can speak
of the lifetime of the newly discovered strange
resonances (particles) mentioned in Chapter
2. Their complete life occupies a time span of
only 10-24 second, approximately the time it
would take light (which moves at the fastest
known speed) to cross the nucleus of hydrogen
(the smallest known object). What about
still smaller times? Does ”time” exist on a
still smaller scale? Does it make any sense to
speak of smaller times if we cannot measureor
perhaps even think sensibly aboutsomething
which happens in a shorter time? Perhaps
not. These are some of the open questions
which you will be asking and perhaps answering
in the next twenty or thirty years.
5-4 Long times
Let us now consider times longer than one
day. Measurement of longer times is easy; we
just count the daysso long as there is someone
around to do thecounting. First we find that
there is another natural periodicity: the year,
about 365 days. We have also discovered that
nature has sometimes provided a counter for
the years, in the form of tree rings or riverbottom
sediments. In some cases we can use
these natural time markers to determine the
time which has passed since some early event.
When we cannot count the years for the measurement
of long times, we must look for other
ways to measure. One of the most successful is
the use of radioactive material as a ”clock.” In
this case we do not have a periodic occurrence,
as for the day or the pendulum, but a new kind
of ”regularity.” We find that the radioactivity
of a particular sample of material decreases by
the same fraction for successive equal increases
in its age. If we plot a graph of the radioactivity
observed as a function of time (say in days),
we obtain a curve like that shown in Fig. 5-3.
We observe that if the radioactivity decreases
to one-half in T days (called the ”half-life”),
then it decreases to one-quarter in another T
days, and soon. In an arbitrary time interval t
there are t/T ”half-lives,” and the fraction left
after this time t is. If we knew that a piece of
material, say a piece of wood, had contained
an amount A of radioactive material when it
was formed, and we found out by a direct measurement
that it now contains the amount B,
we could compute the age of the object, t, by
solving the equation There are, fortunately,
cases in which we can know the amount of
radioactivity that was in an object when it
was formed. We know, for example, that the
carbon dioxide in the air contains a certain
small fraction of the radioactive carbon isotope
C14 (replenished continuously by the action
of cosmic rays). If we measure the total
carbon content of an object, we know that
a certain fraction of that amount was originally
the radioactive C14; we know, therefore,
the starting amount A to use in the formula
above. Carbon-14 has a half-life of 5000 years.
By careful measurements we can measure the
amount left after 20 half-lives or so and can
therefore ”date” organic objects which grew
as long as 100,000 years ago. We would like
to know, and we think we do know, the life of
still older things. Much of our knowledge is
based on the measurements of other radioactive
isotopes which have di®erent half-lives. If
we make measurements with an isotope with
a longer half-life, then we are able to measure
longer times. Uranium, for example, has
an isotope whose half-life is about 109 years,
so that if some material was formed with uranium
in it 109 years ago, only half the uranium
would remain today. When the uranium disintegrates,
it changes into lead. Consider a
piece of rock which was formed a long time
ago in some chemical process. Lead, being
of a chemical nature di®erent from uranium,
would appear in one part of the rock and uranium
would appear in another part of the rock.
The uranium and leadwould be separate. If we
look at that piece of rock today, where there
should only be uranium we will how find a certain
fraction of uranium and a certain fraction
of lead. By comparing these fractions, we can
tell what percent of the uranium disappeared
and changed into lead. By this method, the
age of certain rocks has been determined to
be several billion years. An extension of this
method, not using particular rocks but looking
at the uranium and lead in the oceans and
using averages over the earth, has been used
to determine (within the past few years) that
the age of the earth itself is approximately 5.5
billion years. It is encouraging that the age
of the earth is found to be the same as the
age of the meteorites which land on the earth,
as determined by the uranium method. It appears
that the earth was formed out of rocks
floating in space, and that the meteorites are,
quite likely, some of that material left over.
At some time more than five billion years ago,
the universe started. It is now believed that
at least our part of the universe had its begin-
ning about ten or twelve billion years ago. We
do not know what happened before then. In
fact, we may well ask again: Does the question
make any sense? Does an earlier time
have any meaning?
5-5 Units and standards of time
We have implied that it is convenient if we
start with some standard unit of time, say a
day or a second, and refer all other times to
some multiple or fraction of this unit. What
shall we take as our basic standard of time?
Shall we take the human pulse? If we compare
pulses, we find that they seem to vary a
lot. On comparing two clocks, one finds they
do not vary so much. You might then say,
well, let us take a clock. But whose clock?
There is a story of a Swiss boy who wanted all
of the clocks in his town to ring noon at the
same time. So he went around trying to convince
everyone of the value of this. Everyone
thought it was a marvelous idea so long as all
of the other clocks rang noon when his did!
It is rather di±cult to decide whose clock we
should take as a standard. Fortunately, we all
share one clockthe earth. For a long time the
rotational period of the earth has been taken
as the basic standard of time. As measurements
have been made more and more precise,
however, it has been found that the rotation
of the earth is not exactly periodic, when
measured in terms of the best clocks. These
”best” clocks are those which we have reason
to believe are accurate because they agree
with each other. We now believe that, for various
reasons, some days are longer than others,
some days are shorter, and on the average the
period of the earth becomes a little longer as
the centuries pass. Until very recently we had
found nothing much better than the earth’s
period, so all clocks have been related to the
length of the day, and the second has been
defined as 1/86400 of an average day. Recently
we have been gaining experience with
some natural oscillators which we now believe
would provide a more constant time reference
than the earth, and which are also based on
a natural phenomenon available to everyone.
These are the so-called ”atomic clocks.” Their
basic internal period is that of an atomic vibration
which is very insensitive to the temperature
or any other external e®ects. These
clocks keep time to an accuracy of one part in
109 or better. Within the past two years an
improved atomic clock which operates on the
vibration of the hydrogen atom has been designed
and built by Professor Norman Ramsey
at Harvard University. He believes that
this clock might be 100 times more accurate
still. Measurements now in progress will show
whether this is true or not. We may expect
that since it has been possible to build clocks
much more accurate than astronomical time,
there will soon be an agreement among scientists
to define the unit of time in terms of one
of the atomic clock standards.
5-6 Large distances
Let us now turn to the question of distance.
How far, or how big, are things? Everybody
knows that the way you measure distance
is to start with a stick and count. Or
start with a thumb and count. You begin
with a unit and count. How does one measure
smaller things? How does one subdivide
distance? In the same way that we subdivided
time: we take a smaller unit and count
the number of such units it takes to make up
the longer unit. So we can measure smaller
and smaller lengths. But we do not always
mean by distance what one gets by counting
o® with a meter stick. It would be di±cult
to measure the horizontal distance between
two mountain tops using only a meter stick.
We have found by experience that distance
can be measured in another fashion: by triangulation.
Although this means that we are
really using a di®erent definition of distance,
when they can both be used they agree with
each other. Space is more or less what Euclid
thought it was, so the two types of defi-
nitions of distance agree. Since they do agree
on the earth it gives us some confidence in
using triangulation for still larger distances.
For example, we were able to use triangulation
to measure the height of the first Sputnik.
We found that it was roughly 5 X 105
meters high. By more careful measurements
the distance to the moon can be measured
in the same way. Two telescopes at di®erent
places on the earth can give us the two angles
we need. It has been found in this way that
the moon is 4 X 108 meters away. We cannot
do the same with the sun, or at least no
one has been able to yet. The accuracy with
which one can focus on a given point on the
sun and with which one can measure angles
is not good enough to permit us to measure
the distance to the sun. Then how can we
measure the distance to the sun? We must invent
an extension of the idea of triangulation.
We measure the relative distances of all the
planets by astronomical observations of where
the planets appear to be, and we get a picture
of the solar system with the proper relative
distances of everything, but with no absolute
distance. One absolute measurement is then
required, which has been obtained in a number
of ways. One of the ways, which was believed
until recently to be the most accurate,
was to measure the distance from the earth to
Eros, one of the small planetoids which passes
near the earth every now and then. By triangulation
on this little object, one could get
the one required scale measurement. Knowing
the relative distances of the rest, we can
then tell the distance, for example, from the
earth to the sun, or from the earth to Pluto.
Within the past year there has been a big improvement
in our knowledge of the scale of the
solar system. At the Jet Propulsion Laboratory
the distance from the earth to Venus was
measured quite accurately by a direct radar
observation. This, of course, is a still di®erent
type of inferred distance. We say we know the
speed at which light travels (and therefore, at
which radar waves travel), and we assume that
it is the same speed everywhere between the
earth and Venus. We send the radio wave out,
and count the time until the reflected wave
comes back. From the time we infer a distance,
assuming we know the speed. We have
really another definition of a measurement of
distance. How do we measure the distance to
a star, which is much farther away? Fortunately,
we can go back to our triangulation
method, because the earth moving around the
sun gives us a large baseline for measurements
of objects outside the solar system. If we focus
a telescope on a star in summer and in
winter, we might hope to determine these two
angles accurately enough to be able to measure
the distance to a star. What if the stars
are too far away for us to use triangulation?
Astronomers are always inventing new ways of
measuring distance. They find, for example,
that they can estimate the size and brightness
of a star by its color. The color and brightness
of many nearby starswhose distances are
known by triangulation have been measured,
and it is found that there is a smooth relationship
between the color and the intrinsic
brightness of stars (in most cases). If one now
measures the color of a distant star, one may
use the color-brightness relationship to determine
the intrinsic brightness of the star. By
measuring how bright the star appears to us at
the earth (or perhaps we should say how dim
it appears), we can compute how far away it
is. (For a given intrinsic brightness, the apparent
brightness decreases with the square
of the distance.) A nice confirmation of the
correctness of this method of measuring stellar
distances is given by the results obtained
for groups of stars known as globular clusters.
A photograph of such a group isshown in
Fig. 5-6. Just from looking at the photograph
one is convinced that these stars are all together.
The same result is obtained from distance
measurements by the color-brightness
method. A study of many globular clusters
gives another important bit of information. It
is found that there is a high concentration of
such clusters in a certain part of the sky and
that most of them are about the same distance
from us. Coupling this information with other
evidence, we conclude that this concentration
of clusters marks the center of our galaxy. We
then know the distance to the center of the
galaxyabout 1020 meters. Knowing the size
of our own galaxy, we have a key to the measurement
of still larger distancesthe distances
to other galaxies. Figure 5-7 is a photograph
of a galaxy, which has much the same shape
as our own. Probably it is the same size, too.
(Other evidence supports the idea that galaxies
are all about the same size.) If it is the
same size as ours, we can tell its distance. We
measure the angle it subtends in the sky; we
know its diameter, and we compute its distance
triangulation again!
Photographs of exceedingly distant galaxies
have recently been obtained with the giant
Palomar telescope. One is shown in Fig. 5-8.
It is now believed that some of these galaxies
are about halfway to the limit of the universe1026
meters awaythe largest distance we
can contemplate!
5-7 Short distances
Now let’s think about smaller distances.
Subdividing the meter is easy. Without much
di±culty we can mark o® one thousand equal
spaces which add up to one meter. With somewhat
more di±culty, but in a similar way (using
a good microscope), we can mark o® a
thousand equal subdivisions of the millimeter
to make a scale of microns (millionths of a meter).
It is di±cult to continue to smaller scales,
because we cannot ”see” objects smaller than
the wavelength of visible light (about 5 X 10 7
meter). We need not stop, however, at what
we can see. With an electron microscope, we
can continue the process by making photographs
on a still smaller scale, say down to 10 8 meter
(Fig. 5-9). By indirect measurementsby a
kind oftriangulation on a microscopic scale we
can continue to measure to smaller and smaller
scales. First, from an observation of the way
light of short wavelength (x-radiation) is re-
flected from a pattern of marks of known separation,
we determine the wave-length of the
light vibrations. Then, from the pattern of
the scattering of the same light from a crystal,
we can determine the relative location of the
atoms in the crystal, obtaining results which
agree with the atomic spacings also determined
by chemical means. We find in this way that
atoms have a diameter of about 10-10 meter.
There is a large ”gap” in physical sizes between
the typical atomic dimension of about
lO”10 meter and the nuclear dimensions 10 15
meter, 10 5 times smaller. For nuclear sizes, a
di®erent way of measuring size becomes convenient.
We measure the apparent area, s, called
the e®ective cross section. If we wish the radius,
we can obtain it from s == rr2, since
nuclei are nearly spherical. Measurement of a
nuclear cross section can be made by passing a
beam of high-energy particles through a thin
slab of material and observing the number of
particles which do not get through. These
high-energy particles will plow right through
the thin cloud of electrons and will be stopped
or deflected only if they hit the concentrated
weight of a nucleus. Suppose we have a piece
of material 1 centimeter thick. There will be
about 108 atomic layers. But the nuclei are so
small that there is little chance that any nucleus
will lie behind another. We might imagine
that a highly magnified view of the situationlooking
along the particle beamwould look
like Fig. 5-10. The chance that a very small
particle will hit a nucleus on the trip through
is just the total area covered by the profiles of
the nuclei divided by the total area in the picture.
Suppose that we know that in an area
A of our slab of material there are N atoms
(each with one nucleus, of course). Then the
total area ”covered” by the nuclei is Ns/ A .
Now let the number of particles of our beam
which arrive at the slab be n and the number
which come out the other side be n. The
fraction which do not get through is , which
should just equal the fraction of the area covered.
We can obtain the radius of the nucleus
from the equation* From such an experiment
we find that the radii of the nuclei are from
about 1 to 6 times 10 15 meter. The length
unit lO”15 meter is called fhe fermi, in honor
of Enrico Fermi (1901-1958). What do we find
if we go to smaller distances? Can we measure
smaller distances ? Such questions are not yet
answerable. It has been suggested that the
still unsolved mystery of nuclear forces may
be unravelled only by some modification of our
idea of space, or measurement, at such small
distances. It might be thought that it would
be a good idea to use some natural length as
our unit of lengthsay the radius of the earth or
some fraction of it. The meter was originally
intended to be such a unit and was defined
to be (p/2) X 10 7 times the earth’s radius.
It is neither convenient nor very accurate to
determine the unit of length in this way. For
a long time it has been agreed internationally
that the meter would be defined as the distance
between two scratches on a bar kept in a
special laboratory in France. More recently, it
has been realized that this definition is neither
as precise as would be useful, nor as permanent
or universal as one would like. It is currently
being considered that a new definition
be adopted, an agreed-upon (arbitrary) number
of wavelengths of a chosen spectral line.
Measurements of distance and of time give
results which depend on the observer. Two
observers moving with respect to each other
will not measure the same distances and times
when measuring what appear to be the same
things. Distances and time intervals have different
magnitudes, depending on the coordinate
system (or ”frame of reference”) used for
making the measurements. We shall study
this subject in more detail in a later chapter.
Perfectly precise measurements of distances or
times are not permitted by the laws of nature.
We have mentioned earlier that the errors in
a measurement of the position of an object
must be at least as large as where h is a small
quantity called ”Planck’s constant” and Dp
is the error in our knowledge of the momentum
(mass times velocity) of the object whose
position we are measuring. It was also mentioned
that the uncertainty in position mea-
surements is related to the wave nature of particles.
The relativity of space and time implies
that time measurements have also a minimum
error, given in fact by where AE is the error
in our knowledge of the energy of the process
whose time period we are measuring. If we
wish to know more precisely when something
happened we must know less about what happened,
because our knowledge of the energy
involved will be less. The time uncertainty
is also related to the wave nature of matter.
This equation is right only if the area covered
by the nuclei is a small fraction of the total,
i.e., if (MI ni)ln is much less than 1. Otherwise
we must make a correction for the fact
that some nuclei will be partly obscured by
the nuclei in front of them.

--


          Õâ¸öÊÀ½ç²»ÊÇȱÉÙÃÀ£»
          ¶øÊÇȱÉÙ·¢ÏÖÃÀµÄÑÛ¾¦£¡

           ÉϵÛѽ£¬Çë´ÍÓèÎÒ°É£¡

¡ù À´Ô´:¡¤¹þ¹¤´ó×϶¡Ïã bbs.hit.edu.cn¡¤[FROM: nlo.hit.edu.cn]
[°Ù±¦Ïä] [·µ»ØÊ×Ò³] [Éϼ¶Ä¿Â¼] [¸ùĿ¼] [·µ»Ø¶¥²¿] [Ë¢ÐÂ] [·µ»Ø]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
Ò³ÃæÖ´ÐÐʱ¼ä£º406.645ºÁÃë