Physics 版 (精华区)
发信人: yca (yellowcanna), 信区: Physics
标 题: Feynman于1959年的演讲
发信站: 哈工大紫丁香 (2002年07月31日16:25:34 星期三), 站内信件
费曼1959年做了一个非正式, 或者说有点搞笑意味的演讲, 但是, 现在发现,
很多东西都被他说中了. 有兴趣的看看, 不会吃亏的.
http://www.zyvex.com/nanotech/feynman.html
//从这儿可以得到一些有关Feynman的信息
下面是演讲稿的pdf文件, 不能出国的可以读这个.
http://www.softmatter.net/download/feynman1959talk.pdf
转贴如下(换行不行,最好去看看原文):
There's Plenty of Room at the Bottom
------An Invitation to Enter a New Field of Physics
by Richard P. Feynman
This transcript of the classic talk that Richard Feynman gave on December 29th
1959 at the annual meeting of the American Physical Society at the California
Institute of Technology (Caltech) was first published in the February 1960 is
sue of Caltech's Engineering and Science, which owns the copyright. It has bee
n made available on the web at http://www.zyvex.com/nanotech/feynman.html with
their kind permission.
I imagine experimental physicists must often look with envy at men like Kamerl
ingh Onnes, who discovered a field like low temperature, which seems to be bot
tomless and in which one can go down and down. Such a man is then a leader and
has some temporary monopoly in a scientific adventure. Percy Bridgman, in des
igning a way to obtain higher pressures, opened up another new field and was a
ble to move into it and to lead us all along. The development of ever higher v
acuum was a continuing development of the same kind.
I would like to describe a field, in which little has been done, but in which
an enormous amount can be done in principle. This field is not quite the same
as the others in that it will not tell us much of fundamental physics (in the
sense of, ``What are the strange particles?'') but it is more like solid-state
physics in the sense that it might tell us much of great interest about the s
trange phenomena that occur in complex situations. Furthermore, a point that i
s most important is that it would have an enormous number of technical applica
tions.
What I want to talk about is the problem of manipulating and controlling thing
s on a small scale.
As soon as I mention this, people tell me about miniaturization, and how far i
t has progressed today. They tell me about electric motors that are the size o
f the nail on your small finger. And there is a device on the market, they tel
l me, by which you can write the Lord's Prayer on the head of a pin. But that'
s nothing; that's the most primitive, halting step in the direction I intend t
o discuss. It is a staggeringly small world that is below. In the year 2000, w
hen they look back at this age, they will wonder why it was not until the year
1960 that anybody began seriously to move in this direction.
Why cannot we write the entire 24 volumes of the Encyclopedia Brittanica on th
e head of a pin?
Let's see what would be involved. The head of a pin is a sixteenth of an inch
across. If you magnify it by 25,000 diameters, the area of the head of the pin
is then equal to the area of all the pages of the Encyclopaedia Brittanica. T
herefore, all it is necessary to do is to reduce in size all the writing in th
e Encyclopaedia by 25,000 times. Is that possible? The resolving power of the
eye is about 1/120 of an inch---that is roughly the diameter of one of the lit
tle dots on the fine half-tone reproductions in the Encyclopaedia. This, when
you demagnify it by 25,000 times, is still 80 angstroms in diameter---32 atoms
across, in an ordinary metal. In other words, one of those dots still would c
ontain in its area 1,000 atoms. So, each dot can easily be adjusted in size as
required by the photoengraving, and there is no question that there is enough
room on the head of a pin to put all of the Encyclopaedia Brittanica.
Furthermore, it can be read if it is so written. Let's imagine that it is writ
ten in raised letters of metal; that is, where the black is in the Encyclopedi
a, we have raised letters of metal that are actually 1/25,000 of their ordinar
y size. How would we read it?
If we had something written in such a way, we could read it using techniques i
n common use today. (They will undoubtedly find a better way when we do actual
ly have it written, but to make my point conservatively I shall just take tech
niques we know today.) We would press the metal into a plastic material and ma
ke a mold of it, then peel the plastic off very carefully, evaporate silica in
to the plastic to get a very thin film, then shadow it by evaporating gold at
an angle against the silica so that all the little letters will appear clearly
, dissolve the plastic away from the silica film, and then look through it wit
h an electron microscope!
There is no question that if the thing were reduced by 25,000 times in the for
m of raised letters on the pin, it would be easy for us to read it today. Furt
hermore; there is no question that we would find it easy to make copies of the
master; we would just need to press the same metal plate again into plastic a
nd we would have another copy.
How do we write small?
The next question is: How do we write it? We have no standard technique to do
this now. But let me argue that it is not as difficult as it first appears to
be. We can reverse the lenses of the electron microscope in order to demagnify
as well as magnify. A source of ions, sent through the microscope lenses in r
everse, could be focused to a very small spot. We could write with that spot l
ike we write in a TV cathode ray oscilloscope, by going across in lines, and h
aving an adjustment which determines the amount of material which is going to
be deposited as we scan in lines.
This method might be very slow because of space charge limitations. There will
be more rapid methods. We could first make, perhaps by some photo process, a
screen which has holes in it in the form of the letters. Then we would strike
an arc behind the holes and draw metallic ions through the holes; then we coul
d again use our system of lenses and make a small image in the form of ions, w
hich would deposit the metal on the pin.
A simpler way might be this (though I am not sure it would work): We take ligh
t and, through an optical microscope running backwards, we focus it onto a ver
y small photoelectric screen. Then electrons come away from the screen where t
he light is shining. These electrons are focused down in size by the electron
microscope lenses to impinge directly upon the surface of the metal. Will such
a beam etch away the metal if it is run long enough? I don't know. If it does
n't work for a metal surface, it must be possible to find some surface with wh
ich to coat the original pin so that, where the electrons bombard, a change is
made which we could recognize later.
There is no intensity problem in these devices---not what you are used to in m
agnification, where you have to take a few electrons and spread them over a bi
gger and bigger screen; it is just the opposite. The light which we get from a
page is concentrated onto a very small area so it is very intense. The few el
ectrons which come from the photoelectric screen are demagnified down to a ver
y tiny area so that, again, they are very intense. I don't know why this hasn'
t been done yet!
That's the Encyclopaedia Brittanica on the head of a pin, but let's consider a
ll the books in the world. The Library of Congress has approximately 9 million
volumes; the British Museum Library has 5 million volumes; there are also 5 m
illion volumes in the National Library in France. Undoubtedly there are duplic
ations, so let us say that there are some 24 million volumes of interest in th
e world.
What would happen if I print all this down at the scale we have been discussin
g? How much space would it take? It would take, of course, the area of about a
million pinheads because, instead of there being just the 24 volumes of the E
ncyclopaedia, there are 24 million volumes. The million pinheads can be put in
a square of a thousand pins on a side, or an area of about 3 square yards. Th
at is to say, the silica replica with the paper-thin backing of plastic, with
which we have made the copies, with all this information, is on an area of app
roximately the size of 35 pages of the Encyclopaedia. That is about half as ma
ny pages as there are in this magazine. All of the information which all of ma
nkind has every recorded in books can be carried around in a pamphlet in your
hand---and not written in code, but a simple reproduction of the original pict
ures, engravings, and everything else on a small scale without loss of resolut
ion.
What would our librarian at Caltech say, as she runs all over from one buildin
g to another, if I tell her that, ten years from now, all of the information t
hat she is struggling to keep track of--- 120,000 volumes, stacked from the fl
oor to the ceiling, drawers full of cards, storage rooms full of the older boo
ks---can be kept on just one library card! When the University of Brazil, for
example, finds that their library is burned, we can send them a copy of every
book in our library by striking off a copy from the master plate in a few hour
s and mailing it in an envelope no bigger or heavier than any other ordinary a
ir mail letter.
Now, the name of this talk is ``There is Plenty of Room at the Bottom''---not
just ``There is Room at the Bottom.'' What I have demonstrated is that there i
s room---that you can decrease the size of things in a practical way. I now wa
nt to show that there is plenty of room. I will not now discuss how we are goi
ng to do it, but only what is possible in principle---in other words, what is
possible according to the laws of physics. I am not inventing anti-gravity, wh
ich is possible someday only if the laws are not what we think. I am telling y
ou what could be done if the laws are what we think; we are not doing it simpl
y because we haven't yet gotten around to it.
Information on a small scale
Suppose that, instead of trying to reproduce the pictures and all the informat
ion directly in its present form, we write only the information content in a c
ode of dots and dashes, or something like that, to represent the various lette
rs. Each letter represents six or seven ``bits'' of information; that is, you
need only about six or seven dots or dashes for each letter. Now, instead of w
riting everything, as I did before, on the surface of the head of a pin, I am
going to use the interior of the material as well.
Let us represent a dot by a small spot of one metal, the next dash, by an adja
cent spot of another metal, and so on. Suppose, to be conservative, that a bit
of information is going to require a little cube of atoms 5 times 5 times 5--
-that is 125 atoms. Perhaps we need a hundred and some odd atoms to make sure
that the information is not lost through diffusion, or through some other proc
ess.
I have estimated how many letters there are in the Encyclopaedia, and I have a
ssumed that each of my 24 million books is as big as an Encyclopaedia volume,
and have calculated, then, how many bits of information there are (10^15). For
each bit I allow 100 atoms. And it turns out that all of the information that
man has carefully accumulated in all the books in the world can be written in
this form in a cube of material one two-hundredth of an inch wide--- which is
the barest piece of dust that can be made out by the human eye. So there is p
lenty of room at the bottom! Don't tell me about microfilm!
This fact---that enormous amounts of information can be carried in an exceedin
gly small space---is, of course, well known to the biologists, and resolves th
e mystery which existed before we understood all this clearly, of how it could
be that, in the tiniest cell, all of the information for the organization of
a complex creature such as ourselves can be stored. All this information---whe
ther we have brown eyes, or whether we think at all, or that in the embryo the
jawbone should first develop with a little hole in the side so that later a n
erve can grow through it---all this information is contained in a very tiny fr
action of the cell in the form of long-chain DNA molecules in which approximat
ely 50 atoms are used for one bit of information about the cell.
Better electron microscopes
If I have written in a code, with 5 times 5 times 5 atoms to a bit, the questi
on is: How could I read it today? The electron microscope is not quite good en
ough, with the greatest care and effort, it can only resolve about 10 angstrom
s. I would like to try and impress upon you while I am talking about all of th
ese things on a small scale, the importance of improving the electron microsco
pe by a hundred times. It is not impossible; it is not against the laws of dif
fraction of the electron. The wave length of the electron in such a microscope
is only 1/20 of an angstrom. So it should be possible to see the individual a
toms. What good would it be to see individual atoms distinctly?
We have friends in other fields---in biology, for instance. We physicists ofte
n look at them and say, ``You know the reason you fellows are making so little
progress?'' (Actually I don't know any field where they are making more rapid
progress than they are in biology today.) ``You should use more mathematics,
like we do.'' They could answer us---but they're polite, so I'll answer for th
em: ``What you should do in order for us to make more rapid progress is to mak
e the electron microscope 100 times better.''
What are the most central and fundamental problems of biology today? They are
questions like: What is the sequence of bases in the DNA? What happens when yo
u have a mutation? How is the base order in the DNA connected to the order of
amino acids in the protein? What is the structure of the RNA; is it single-cha
in or double-chain, and how is it related in its order of bases to the DNA? Wh
at is the organization of the microsomes? How are proteins synthesized? Where
does the RNA go? How does it sit? Where do the proteins sit? Where do the amin
o acids go in? In photosynthesis, where is the chlorophyll; how is it arranged
; where are the carotenoids involved in this thing? What is the system of the
conversion of light into chemical energy?
It is very easy to answer many of these fundamental biological questions; you
just look at the thing! You will see the order of bases in the chain; you will
see the structure of the microsome. Unfortunately, the present microscope see
s at a scale which is just a bit too crude. Make the microscope one hundred ti
mes more powerful, and many problems of biology would be made very much easier
. I exaggerate, of course, but the biologists would surely be very thankful to
you---and they would prefer that to the criticism that they should use more m
athematics.
The theory of chemical processes today is based on theoretical physics. In thi
s sense, physics supplies the foundation of chemistry. But chemistry also has
analysis. If you have a strange substance and you want to know what it is, you
go through a long and complicated process of chemical analysis. You can analy
ze almost anything today, so I am a little late with my idea. But if the physi
cists wanted to, they could also dig under the chemists in the problem of chem
ical analysis. It would be very easy to make an analysis of any complicated ch
emical substance; all one would have to do would be to look at it and see wher
e the atoms are. The only trouble is that the electron microscope is one hundr
ed times too poor. (Later, I would like to ask the question: Can the physicist
s do something about the third problem of chemistry---namely, synthesis? Is th
ere a physical way to synthesize any chemical substance?
The reason the electron microscope is so poor is that the f- value of the lens
es is only 1 part to 1,000; you don't have a big enough numerical aperture. An
d I know that there are theorems which prove that it is impossible, with axial
ly symmetrical stationary field lenses, to produce an f-value any bigger than
so and so; and therefore the resolving power at the present time is at its the
oretical maximum. But in every theorem there are assumptions. Why must the fie
ld be symmetrical? I put this out as a challenge: Is there no way to make the
electron microscope more powerful?
The marvelous biological system
The biological example of writing information on a small scale has inspired me
to think of something that should be possible. Biology is not simply writing
information; it is doing something about it. A biological system can be exceed
ingly small. Many of the cells are very tiny, but they are very active; they m
anufacture various substances; they walk around; they wiggle; and they do all
kinds of marvelous things---all on a very small scale. Also, they store inform
ation. Consider the possibility that we too can make a thing very small which
does what we want---that we can manufacture an object that maneuvers at that l
evel!
There may even be an economic point to this business of making things very sma
ll. Let me remind you of some of the problems of computing machines. In comput
ers we have to store an enormous amount of information. The kind of writing th
at I was mentioning before, in which I had everything down as a distribution o
f metal, is permanent. Much more interesting to a computer is a way of writing
, erasing, and writing something else. (This is usually because we don't want
to waste the material on which we have just written. Yet if we could write it
in a very small space, it wouldn't make any difference; it could just be throw
n away after it was read. It doesn't cost very much for the material).
Miniaturizing the computer
I don't know how to do this on a small scale in a practical way, but I do know
that computing machines are very large; they fill rooms. Why can't we make th
em very small, make them of little wires, little elements---and by little, I m
ean little. For instance, the wires should be 10 or 100 atoms in diameter, and
the circuits should be a few thousand angstroms across. Everybody who has ana
lyzed the logical theory of computers has come to the conclusion that the poss
ibilities of computers are very interesting---if they could be made to be more
complicated by several orders of magnitude. If they had millions of times as
many elements, they could make judgments. They would have time to calculate wh
at is the best way to make the calculation that they are about to make. They c
ould select the method of analysis which, from their experience, is better tha
n the one that we would give to them. And in many other ways, they would have
new qualitative features.
If I look at your face I immediately recognize that I have seen it before. (Ac
tually, my friends will say I have chosen an unfortunate example here for the
subject of this illustration. At least I recognize that it is a man and not an
apple.) Yet there is no machine which, with that speed, can take a picture of
a face and say even that it is a man; and much less that it is the same man t
hat you showed it before---unless it is exactly the same picture. If the face
is changed; if I am closer to the face; if I am further from the face; if the
light changes---I recognize it anyway. Now, this little computer I carry in my
head is easily able to do that. The computers that we build are not able to d
o that. The number of elements in this bone box of mine are enormously greater
than the number of elements in our ``wonderful'' computers. But our mechanica
l computers are too big; the elements in this box are microscopic. I want to m
ake some that are submicroscopic.
If we wanted to make a computer that had all these marvelous extra qualitative
abilities, we would have to make it, perhaps, the size of the Pentagon. This
has several disadvantages. First, it requires too much material; there may not
be enough germanium in the world for all the transistors which would have to
be put into this enormous thing. There is also the problem of heat generation
and power consumption; TVA would be needed to run the computer. But an even mo
re practical difficulty is that the computer would be limited to a certain spe
ed. Because of its large size, there is finite time required to get the inform
ation from one place to another. The information cannot go any faster than the
speed of light---so, ultimately, when our computers get faster and faster and
more and more elaborate, we will have to make them smaller and smaller.
But there is plenty of room to make them smaller. There is nothing that I can
see in the physical laws that says the computer elements cannot be made enormo
usly smaller than they are now. In fact, there may be certain advantages.
Miniaturization by evaporation
How can we make such a device? What kind of manufacturing processes would we u
se? One possibility we might consider, since we have talked about writing by p
utting atoms down in a certain arrangement, would be to evaporate the material
, then evaporate the insulator next to it. Then, for the next layer, evaporate
another position of a wire, another insulator, and so on. So, you simply evap
orate until you have a block of stuff which has the elements--- coils and cond
ensers, transistors and so on---of exceedingly fine dimensions.
But I would like to discuss, just for amusement, that there are other possibil
ities. Why can't we manufacture these small computers somewhat like we manufac
ture the big ones? Why can't we drill holes, cut things, solder things, stamp
things out, mold different shapes all at an infinitesimal level? What are the
limitations as to how small a thing has to be before you can no longer mold it
? How many times when you are working on something frustratingly tiny like you
r wife's wrist watch, have you said to yourself, ``If I could only train an an
t to do this!'' What I would like to suggest is the possibility of training an
ant to train a mite to do this. What are the possibilities of small but movab
le machines? They may or may not be useful, but they surely would be fun to ma
ke.
Consider any machine---for example, an automobile---and ask about the problems
of making an infinitesimal machine like it. Suppose, in the particular design
of the automobile, we need a certain precision of the parts; we need an accur
acy, let's suppose, of 4/10,000 of an inch. If things are more inaccurate than
that in the shape of the cylinder and so on, it isn't going to work very well
. If I make the thing too small, I have to worry about the size of the atoms;
I can't make a circle of ``balls'' so to speak, if the circle is too small. So
, if I make the error, corresponding to 4/10,000 of an inch, correspond to an
error of 10 atoms, it turns out that I can reduce the dimensions of an automob
ile 4,000 times, approximately---so that it is 1 mm. across. Obviously, if you
redesign the car so that it would work with a much larger tolerance, which is
not at all impossible, then you could make a much smaller device.
It is interesting to consider what the problems are in such small machines. Fi
rstly, with parts stressed to the same degree, the forces go as the area you a
re reducing, so that things like weight and inertia are of relatively no impor
tance. The strength of material, in other words, is very much greater in propo
rtion. The stresses and expansion of the flywheel from centrifugal force, for
example, would be the same proportion only if the rotational speed is increase
d in the same proportion as we decrease the size. On the other hand, the metal
s that we use have a grain structure, and this would be very annoying at small
scale because the material is not homogeneous. Plastics and glass and things
of this amorphous nature are very much more homogeneous, and so we would have
to make our machines out of such materials.
There are problems associated with the electrical part of the system---with th
e copper wires and the magnetic parts. The magnetic properties on a very small
scale are not the same as on a large scale; there is the ``domain'' problem i
nvolved. A big magnet made of millions of domains can only be made on a small
scale with one domain. The electrical equipment won't simply be scaled down; i
t has to be redesigned. But I can see no reason why it can't be redesigned to
work again.
Problems of lubrication
Lubrication involves some interesting points. The effective viscosity of oil w
ould be higher and higher in proportion as we went down (and if we increase th
e speed as much as we can). If we don't increase the speed so much, and change
from oil to kerosene or some other fluid, the problem is not so bad. But actu
ally we may not have to lubricate at all! We have a lot of extra force. Let th
e bearings run dry; they won't run hot because the heat escapes away from such
a small device very, very rapidly.
This rapid heat loss would prevent the gasoline from exploding, so an internal
combustion engine is impossible. Other chemical reactions, liberating energy
when cold, can be used. Probably an external supply of electrical power would
be most convenient for such small machines.
What would be the utility of such machines? Who knows? Of course, a small auto
mobile would only be useful for the mites to drive around in, and I suppose ou
r Christian interests don't go that far. However, we did note the possibility
of the manufacture of small elements for computers in completely automatic fac
tories, containing lathes and other machine tools at the very small level. The
small lathe would not have to be exactly like our big lathe. I leave to your
imagination the improvement of the design to take full advantage of the proper
ties of things on a small scale, and in such a way that the fully automatic as
pect would be easiest to manage.
A friend of mine (Albert R. Hibbs) suggests a very interesting possibility for
relatively small machines. He says that, although it is a very wild idea, it
would be interesting in surgery if you could swallow the surgeon. You put the
mechanical surgeon inside the blood vessel and it goes into the heart and ``lo
oks'' around. (Of course the information has to be fed out.) It finds out whic
h valve is the faulty one and takes a little knife and slices it out. Other sm
all machines might be permanently incorporated in the body to assist some inad
equately-functioning organ.
Now comes the interesting question: How do we make such a tiny mechanism? I le
ave that to you. However, let me suggest one weird possibility. You know, in t
he atomic energy plants they have materials and machines that they can't handl
e directly because they have become radioactive. To unscrew nuts and put on bo
lts and so on, they have a set of master and slave hands, so that by operating
a set of levers here, you control the ``hands'' there, and can turn them this
way and that so you can handle things quite nicely.
Most of these devices are actually made rather simply, in that there is a part
icular cable, like a marionette string, that goes directly from the controls t
o the ``hands.'' But, of course, things also have been made using servo motors
, so that the connection between the one thing and the other is electrical rat
her than mechanical. When you turn the levers, they turn a servo motor, and it
changes the electrical currents in the wires, which repositions a motor at th
e other end.
Now, I want to build much the same device---a master-slave system which operat
es electrically. But I want the slaves to be made especially carefully by mode
rn large-scale machinists so that they are one-fourth the scale of the ``hands
'' that you ordinarily maneuver. So you have a scheme by which you can do thin
gs at one- quarter scale anyway---the little servo motors with little hands pl
ay with little nuts and bolts; they drill little holes; they are four times sm
aller. Aha! So I manufacture a quarter-size lathe; I manufacture quarter-size
tools; and I make, at the one-quarter scale, still another set of hands again
relatively one-quarter size! This is one-sixteenth size, from my point of view
. And after I finish doing this I wire directly from my large-scale system, th
rough transformers perhaps, to the one-sixteenth-size servo motors. Thus I can
now manipulate the one-sixteenth size hands.
Well, you get the principle from there on. It is rather a difficult program, b
ut it is a possibility. You might say that one can go much farther in one step
than from one to four. Of course, this has all to be designed very carefully
and it is not necessary simply to make it like hands. If you thought of it ver
y carefully, you could probably arrive at a much better system for doing such
things.
If you work through a pantograph, even today, you can get much more than a fac
tor of four in even one step. But you can't work directly through a pantograph
which makes a smaller pantograph which then makes a smaller pantograph---beca
use of the looseness of the holes and the irregularities of construction. The
end of the pantograph wiggles with a relatively greater irregularity than the
irregularity with which you move your hands. In going down this scale, I would
find the end of the pantograph on the end of the pantograph on the end of the
pantograph shaking so badly that it wasn't doing anything sensible at all.
At each stage, it is necessary to improve the precision of the apparatus. If,
for instance, having made a small lathe with a pantograph, we find its lead sc
rew irregular---more irregular than the large-scale one---we could lap the lea
d screw against breakable nuts that you can reverse in the usual way back and
forth until this lead screw is, at its scale, as accurate as our original lead
screws, at our scale.
We can make flats by rubbing unflat surfaces in triplicates together---in thre
e pairs---and the flats then become flatter than the thing you started with. T
hus, it is not impossible to improve precision on a small scale by the correct
operations. So, when we build this stuff, it is necessary at each step to imp
rove the accuracy of the equipment by working for awhile down there, making ac
curate lead screws, Johansen blocks, and all the other materials which we use
in accurate machine work at the higher level. We have to stop at each level an
d manufacture all the stuff to go to the next level---a very long and very dif
ficult program. Perhaps you can figure a better way than that to get down to s
mall scale more rapidly.
Yet, after all this, you have just got one little baby lathe four thousand tim
es smaller than usual. But we were thinking of making an enormous computer, wh
ich we were going to build by drilling holes on this lathe to make little wash
ers for the computer. How many washers can you manufacture on this one lathe?
A hundred tiny hands
When I make my first set of slave ``hands'' at one-fourth scale, I am going to
make ten sets. I make ten sets of ``hands,'' and I wire them to my original l
evers so they each do exactly the same thing at the same time in parallel. Now
, when I am making my new devices one-quarter again as small, I let each one m
anufacture ten copies, so that I would have a hundred ``hands'' at the 1/16th
size.
Where am I going to put the million lathes that I am going to have? Why, there
is nothing to it; the volume is much less than that of even one full-scale la
the. For instance, if I made a billion little lathes, each 1/4000 of the scale
of a regular lathe, there are plenty of materials and space available because
in the billion little ones there is less than 2 percent of the materials in o
ne big lathe.
It doesn't cost anything for materials, you see. So I want to build a billion
tiny factories, models of each other, which are manufacturing simultaneously,
drilling holes, stamping parts, and so on.
As we go down in size, there are a number of interesting problems that arise.
All things do not simply scale down in proportion. There is the problem that m
aterials stick together by the molecular (Van der Waals) attractions. It would
be like this: After you have made a part and you unscrew the nut from a bolt,
it isn't going to fall down because the gravity isn't appreciable; it would e
ven be hard to get it off the bolt. It would be like those old movies of a man
with his hands full of molasses, trying to get rid of a glass of water. There
will be several problems of this nature that we will have to be ready to desi
gn for.
Rearranging the atoms
But I am not afraid to consider the final question as to whether, ultimately--
-in the great future---we can arrange the atoms the way we want; the very atom
s, all the way down! What would happen if we could arrange the atoms one by on
e the way we want them (within reason, of course; you can't put them so that t
hey are chemically unstable, for example).
Up to now, we have been content to dig in the ground to find minerals. We heat
them and we do things on a large scale with them, and we hope to get a pure s
ubstance with just so much impurity, and so on. But we must always accept some
atomic arrangement that nature gives us. We haven't got anything, say, with a
``checkerboard'' arrangement, with the impurity atoms exactly arranged 1,000
angstroms apart, or in some other particular pattern.
What could we do with layered structures with just the right layers? What woul
d the properties of materials be if we could really arrange the atoms the way
we want them? They would be very interesting to investigate theoretically. I c
an't see exactly what would happen, but I can hardly doubt that when we have s
ome control of the arrangement of things on a small scale we will get an enorm
ously greater range of possible properties that substances can have, and of di
fferent things that we can do.
Consider, for example, a piece of material in which we make little coils and c
ondensers (or their solid state analogs) 1,000 or 10,000 angstroms in a circui
t, one right next to the other, over a large area, with little antennas sticki
ng out at the other end---a whole series of circuits. Is it possible, for exam
ple, to emit light from a whole set of antennas, like we emit radio waves from
an organized set of antennas to beam the radio programs to Europe? The same t
hing would be to beam the light out in a definite direction with very high int
ensity. (Perhaps such a beam is not very useful technically or economically.)
I have thought about some of the problems of building electric circuits on a s
mall scale, and the problem of resistance is serious. If you build a correspon
ding circuit on a small scale, its natural frequency goes up, since the wave l
ength goes down as the scale; but the skin depth only decreases with the squar
e root of the scale ratio, and so resistive problems are of increasing difficu
lty. Possibly we can beat resistance through the use of superconductivity if t
he frequency is not too high, or by other tricks.
Atoms in a small world
When we get to the very, very small world---say circuits of seven atoms---we h
ave a lot of new things that would happen that represent completely new opport
unities for design. Atoms on a small scale behave like nothing on a large scal
e, for they satisfy the laws of quantum mechanics. So, as we go down and fiddl
e around with the atoms down there, we are working with different laws, and we
can expect to do different things. We can manufacture in different ways. We c
an use, not just circuits, but some system involving the quantized energy leve
ls, or the interactions of quantized spins, etc.
Another thing we will notice is that, if we go down far enough, all of our dev
ices can be mass produced so that they are absolutely perfect copies of one an
other. We cannot build two large machines so that the dimensions are exactly t
he same. But if your machine is only 100 atoms high, you only have to get it c
orrect to one-half of one percent to make sure the other machine is exactly th
e same size---namely, 100 atoms high!
At the atomic level, we have new kinds of forces and new kinds of possibilitie
s, new kinds of effects. The problems of manufacture and reproduction of mater
ials will be quite different. I am, as I said, inspired by the biological phen
omena in which chemical forces are used in repetitious fashion to produce all
kinds of weird effects (one of which is the author).
The principles of physics, as far as I can see, do not speak against the possi
bility of maneuvering things atom by atom. It is not an attempt to violate any
laws; it is something, in principle, that can be done; but in practice, it ha
s not been done because we are too big.
Ultimately, we can do chemical synthesis. A chemist comes to us and says, ``Lo
ok, I want a molecule that has the atoms arranged thus and so; make me that mo
lecule.'' The chemist does a mysterious thing when he wants to make a molecule
. He sees that it has got that ring, so he mixes this and that, and he shakes
it, and he fiddles around. And, at the end of a difficult process, he usually
does succeed in synthesizing what he wants. By the time I get my devices worki
ng, so that we can do it by physics, he will have figured out how to synthesiz
e absolutely anything, so that this will really be useless.
But it is interesting that it would be, in principle, possible (I think) for a
physicist to synthesize any chemical substance that the chemist writes down.
Give the orders and the physicist synthesizes it. How? Put the atoms down wher
e the chemist says, and so you make the substance. The problems of chemistry a
nd biology can be greatly helped if our ability to see what we are doing, and
to do things on an atomic level, is ultimately developed---a development which
I think cannot be avoided.
Now, you might say, ``Who should do this and why should they do it?'' Well, I
pointed out a few of the economic applications, but I know that the reason tha
t you would do it might be just for fun. But have some fun! Let's have a compe
tition between laboratories. Let one laboratory make a tiny motor which it sen
ds to another lab which sends it back with a thing that fits inside the shaft
of the first motor.
High school competition
Just for the fun of it, and in order to get kids interested in this field, I w
ould propose that someone who has some contact with the high schools think of
making some kind of high school competition. After all, we haven't even starte
d in this field, and even the kids can write smaller than has ever been writte
n before. They could have competition in high schools. The Los Angeles high sc
hool could send a pin to the Venice high school on which it says, ``How's this
?'' They get the pin back, and in the dot of the ``i'' it says, ``Not so hot.'
'
Perhaps this doesn't excite you to do it, and only economics will do so. Then
I want to do something; but I can't do it at the present moment, because I hav
en't prepared the ground. It is my intention to offer a prize of $1,000 to the
first guy who can take the information on the page of a book and put it on an
area 1/25,000 smaller in linear scale in such manner that it can be read by a
n electron microscope.
And I want to offer another prize---if I can figure out how to phrase it so th
at I don't get into a mess of arguments about definitions---of another $1,000
to the first guy who makes an operating electric motor---a rotating electric m
otor which can be controlled from the outside and, not counting the lead-in wi
res, is only 1/64 inch cube.
I do not expect that such prizes will have to wait very long for claimants.
--
╭︿︿︿╮ ╭︿︿︿╮ ╭︿︿︿╮ ╭︿︿︿╮
{/ o o \} {/ . . \} {/ ︿︿ \} {/ $ $ \}
( (oo) ) ( (oo) ) ( (oo) ) ( (oo) )
︶ ︶ ︶ ︶
标准猪 小眼猪 眉开眼笑的猪 财迷心窍的猪
╭︿︿︿╮ ╭︿︿︿╮ ╭︿︿︿╮ ╭︿︿︿╮
※ 来源:·哈工大紫丁香 bbs.hit.edu.cn·[FROM: nlo.hit.edu.cn]
※ 修改:·yca 於 08月02日10:28:51 修改本文·[FROM: nlo.hit.edu.cn]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:404.410毫秒