Physics 版 (精华区)
发信人: zjliu (秋天的萝卜), 信区: Physics
标 题: 点亮碳纳米管(翻译)
发信站: 哈工大紫丁香 (Fri May 9 10:54:34 2003) , 转信
Carbon nanotubes light up
2 May 2003
http://www.physicsweb.org/article/news/7/5/3
Scientists at IBM Research in the US have obtained light from a carbon
nanotube by passing a current through it. Phaedon Avouris and co-workers
say that the device could be used to fabricate ultrasmall optoelectronics
devices for applications in high-speed communications (J A Misewich et al.
2003 Science 300 783).
IBM美国研究院的科学家利用电流通过碳纳米管从中获得了光.Phaedon Avouris和
他的合作者们说这个器件能够用来制造用于高速通讯的超微小光电器件.
Light-emitting devices rely on charge carriers - electrons and holes -
being brought together so that they can recombine to emit photons.
Single-walled carbon nanotubes have been used as field-effect transistors
before and now the IBM team has succeeded in obtaining light from them.
Previous nanotubes have only emitted light when excited by another light
source such as a laser.
发光器件依赖载流子-电子和空穴-合在一起以便他们能复合发出光子.单层碳纳米管已经
被用于场效应晶体管,现在IBM小组成功的从中得到了光.以前的纳米管只有在别的光源比
如激光来激发后才会发光.
图一
http://www.physicsweb.org/objects/news/thumb/7/5/3/nanotube.jpg
Avouris and colleagues used single nanotubes to make a three-terminal FET
device. They randomly dispersed the nanotubes - each about 1.4 nanometres
in diameter - onto a silicon substrate that contained a 150 nanometre
silicon dioxide layer. 'Source' and 'drain' contacts were then added at
either end of the device so that electrons and holes could be injected
(figure 1). The electrons and holes recombined in the nanotube to emit
infrared radiation at wavelengths longer than about 0.8 microns. This
included light at a wavelength of 1.5 micrometres, which is widely used in
fibre-optic communications (figure 2).
Avouris和他的同事利用单纳米管制造了一个三级FET(场效应晶体管)器件.他们把纳米管
-每个直径大约1.4纳米-随机的撒在有150纳米厚二氧化硅薄层的硅基底上.然后"源"极和
"漏"极被加到器件的每端上,以便发射电子和空穴.电子和空穴在碳纳米管中复合发出波
长长于1.5微米的红外光.这里面包括1.5微米波长的光,它被广泛的应用于光纤通讯.(图
二)
图二
http://www.physicsweb.org/objects/news/thumb/7/5/3/nanotube-light.jpg
http://www.physicsweb.org/objects/news/thumb/7/5/3/nanotube-light.jpg
The device does not rely on doping to create charge carriers, as silicon
transistors do, but is 'biased' so that one part of the nanotube conducts
electrons while the other conducts holes. This is achieved by the formation
of Schottky barriers - potential barriers that electrons can tunnel through
- at the source and drain.
The wavelength of the emission is determined by the band gap of the
nanotube, which depends on the diameter of the nanotube. Changing the
thickness of the silicon dioxide layer and using other materials to
construct the device might improve the overall efficiency according to the
IBM team.
这个器件不依赖于参杂创造电荷壁垒,就像硅晶体管那样,但是它是偏移的,所以
纳米管的一部分传导电子而另一部分传导空穴.这通过在源极和漏极的肖特基壁垒-电子
能够隧穿的势垒-的形成而实现.发射光的波长有纳米管的带隙决定,带隙由纳米管的直径
决定.据IBM小组,改变二氧化硅层的厚度以及利用其它材料来制造器件可能会改善整体的
效率.
Author
Belle Dum?is Science Writer at PhysicsWeb
--
※ 来源:.哈工大紫丁香 http://bbs.hit.edu.cn [FROM: 202.118.229.86]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:3.234毫秒