Physics 版 (精华区)

发信人: yanyanyan (风), 信区: Physics
标  题: 4 什么是戈德尔证明?戈德尔证明是否说明真理是不
发信站: 哈工大紫丁香 (2001年02月19日11:19:52 星期一), 站内信件


4 什么是戈德尔证明?戈德尔证明是否说明真理是不
  可得知的?

  从欧几里得(2200年前)以来,数学家一般都是从
某些称为“公理”的陈述出发,推导出各种有用的结论。
  从某种意义上说,这几乎就像是一种必须遵守两条规则
的游戏。第一,公理应当尽量少。如果你能从某一条公理推
导出另一条公理,所么,所推导出的那条公理就不能作为公
理。第二,公理必须是没有内在矛盾的。绝不允许从某一公
理推导出两个相互矛盾的结论。
  任何一本中学几何课本都要先列出一组公理:通过两点
只能作一条直线;整体等于各个部分之和,等等。在很长一
段时间内,人们都把欧几里得的公理看作是唯一可用来建立
没有内在矛盾的几何学的公理,从而把这些公理看作是“真
公理”。
  但是,到了十九世纪,有人证明了欧几里得的公理是可
以用某些方式来加以改变的,因而可以建立另外一种不同的
几何学,即“非欧几里得几何学”。这两种几何学虽然各不
相同,但每一种几何学都不具有内在矛盾。从此以后,人们
如果要问哪一种几何学是真几何学,就没有意义了。如果要
问,就只能问哪一种几何学更有用些。
  事实上,我们可以用许多组公理来建立几种各不相同但
又各自并不具有内在矛盾的数学体系。
  在任何一种这样的数学体系中,你都必定不可能根据它
的公理推导出既是如此又非如此的结论,因为如果这样的话,
这个数学体系就不可能不具有内在矛盾,就会遭到淘汰。但
是,徜若你能作出一种陈述,并且发现你不能证明它既是如
此又非如此的话,又将怎么样呢?
  假如我说:“我现在所说的是假话”。
  是假话吗?如果是假话,那么,我在说假话这件事就是
假的了,因此,我必定在说真话。如果我在说真话,那么我
在说假话这件事就是真的了,因此,我确实在说假话。我可
以永无休止地来回这样说,结果,将永远无法证明我所说的
到底是如此,还是并非如此。
  假如你能对这些逻辑公理进行调整,以排除上面所说的
这种可能性,那么,你能不能找到另外的方法来作出这样一
种既是如此,又非如此的说法?
  1931年,一位奥地利数学家戈德尔终于提出一个有
力的证明,他指出,对于任何一组公理,你都能作出既不能
根据这些公理来证明事实确是如此,也不能根据这些公理来
证明事实确非如此的说法。从这个意义上讲,任何人都不可
能建立出一种可以凭此推导出一个完美无缺的数学体系的公
理。
  这是不是意味着我们永远不可能找到“真理”呢?
  第一,因为一种数学体系不完美,并不意味着它所包含
的东西是假的。如果我们不想超出这样的数学体系的限度来
应用它,它就仍然是极其有用的。
  第二,戈德尔证明只适用于数学中所应用的那几种演绎
体系。但是演绎并不是发现“真理”的唯一办法。任何公理
都不能帮助我们去推导出太阳系的大小。太阳系的大小是通
过观察和测量而得出的——观测是得到“真理”的另一途径。


--
※ 来源:·哈工大紫丁香 bbs.hit.edu.cn·[FROM: 133.24.88.68]
[百宝箱] [返回首页] [上级目录] [根目录] [返回顶部] [刷新] [返回]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:3.255毫秒