Physics 版 (精华区)
发信人: zjliu (秋天的萝卜), 信区: Physics
标 题: 混沌动力学,奇异吸引子
发信站: 哈工大紫丁香 (Mon Jun 23 18:38:40 2003)
发信站: 空间科学BBS站
动力学的几何化发端于大约100年前。法国数学家昂利·庞
加莱(Henri Poincare)是一个独立独行的人(如果有的话),但他非
常杰出,以致他的许多观点几乎一夜之间就成了正统的观点,当时
他发明了相空间概念,这是一个虚构的数学空间,表示给定动力学
系统所有可能的运动。为了举一个非力学的例子,让我们来考虑猎
食生态系统的群体动力学。此系统中捕食者是猪,被捕食者是块菌
(一种味道奇特、辛辣的真菌)。我们关注的变量是两个群体的规模
——猪的数目和块菌的数目(两者都相对于某个参考值,如100
万)。这一选择实际上使得两个变量连续,即取带小数位的实数值,
而不取整数值。例如,假如猪的参考数目是100万,则17439头猪
相当于值0.017439。现在,块菌的自然增长依赖于有多少块菌以及
猪吃块菌的速率:猪的增长依赖于猪的头数以及猪吃的块菌数目。
于是每个变量的变化率都依赖于这两个变量,我们可把注意力转
向群体动力学的微分方程组。我不把方程列出来,因为在这里关键
不是方程,而是你用方程干什么。
这些方程原则上确定任何初始群体值将如何随时间而变化。
例如,假使我们从17439头猪和788444株块菌开始,则你对猪变
量引入初始值0.017439,对块菌变量引入初始值0.788444,方程
会含蓄地告诉你这些数将如何变化。困难的是使这种含蓄变得清
晰:求解方程。但在什么意义上求解方程呢? 经典数学家的自然反
应是寻找一个公式,这个公式精确地告诉我们猪头数和块菌株数
在任何时刻将是多少。不幸的是,此种“显式解”太罕见,几乎不值
得费力去寻找它们,除非方程具有很特殊的、受限制的形式。另一
个办法是在计算机上求近似解,但那只能告诉我们这些特定韧始
值将发生什么变化,以及我们最想知道的许多不同的初始值将发
生什么变化。
庞加莱的思想是画一幅图,这幅图显示所有初始值所发生的
情况。系统的状态--在某一时刻两个群体的规模——可以表示
成平面上的点,用坐标的方法即可表示。例如,我们可能用横坐标
代表猪头数,用纵坐标代表块菌株数。上述初始状态对应于横坐标
是0.017439、纵坐标是0.788444的点。现在让时间流逝。坐标按
照微分方程表达的规则从一个时刻变到下一个时刻,于是对应点
运动。依动点划出一条曲线;那条曲线是整个系统未来状态的直观
表述。事实上,通过观察这条曲线,不用搞清楚坐标的实际数值,你
就可以“看出”重要的动力学特征。
例如,如果这曲线闭合成环,则两个群体遵从周期性循环,不
断重复同样一些值 就像跑道上的赛车每一圈都经过同一个旁
观者那样。假如曲线趋近某个特定点并停在那,则群体稳定到一个
定态,它们在此都不发生变化——就像耗尽了燃料的赛车。由于幸
运的巧合,循环和定态具有重要的生态意义—特别是,它们给群
体规模设置了上限和下限。所以肉眼最易看出的这些特征确实是
实际事物的特征。并且,许多不相关的细节可以被忽略——例如,
不必描述其精确形状,我们就可以看出存在一种闭合环(它代表两
个群体循环的合成“波形”)。
假如我们试一试一对不同的初始值,那将会发生什么情况? 我
们得到第二条曲线。每一对初始值定义一条新曲线。通过画出一
整族的此种曲线,我们可以抓住所有初始值之下系统所有可能的
行为。这族曲线类似于围绕平面盘旋的一种虚拟数学流体的流线。
我们称此平面为系统的相空间,那族盘旋曲线是系统的相图。取代
具有各种初始条件的以符号为基础的微分方程概念,我们有了流
经猪块菌空间的点的直观几何图象。这仅在其许多点是潜在点而
非实际点而有别于普通平面:它们的坐标对应于在适当初始条件
下可能出现,但在特定情况下可能不会出现的猪头数和块菌株数。
所以,除了从符号到几何的心理转移,还存在从实际向潜在的哲理
性的转移。
对于任何动力学系统,都可以设想同一种类型的几何图象。有
相空间,其坐标是所有变量的值;有相图,即一族表示从所有可能
的初始条件出发的所有可能行为的盘旋曲线,这些曲线为微分方
程所刻划。这一思想是一大进展,因为我们无需关心微分方程解的
精确数值,而可以把注意力集中于相图的宽广范围,使人发挥其最
大优势(即惊人的图象处理能力)。作为把全部潜在行为编织起来
的一种方式(自然界从中选择实际观察到的行为)的相空间图,在
科学中已被广为应用。
庞加莱这一大创新所带来的结果,是动力学可借助被称为吸
引子(attractor)的几何形状来加以直观化。假如你使一动力学系
统从某个初始点出发,观察它长期运作的情况,你往往会发现,它
最终围绕相空间中某个明确的形状游荡。例如,曲线可以向一个闭
合环旋进,然后绕环永远兜圈子。而且,初始条件的不同选择会导
致相同的终末形状。倘若如此,那形状就叫做吸引子。系统长期的
动力学特性受其吸引子支配,吸引子的形状决定产生何种类型的
动力学特性。
例如,趋向于定态的系统,它具有的吸引子是一个点。趋向于
周期性地重复同样行为的系统,它具有的吸引子是一个闭环。也就
是说,闭环吸引子相当于振荡器。请回忆一下第五章有关振动的小
周期性地重复同样行为的系统,它具有的吸引子是一个闭环。也就
是说,闭环吸引子相当于振荡器。请回忆一下第五章有关振动的小
提琴弦的描述:小提琴弦经历一系列最终使它回归到出发点的运
动,并将一遍又一遍重复那个系列。我的意思不是小提琴弦以物理
环运动,但我对它的描述是隐喻意义上的闭环:运动经过相空间的
动态地形而环游。
混沌有其自身颇为古怪的几何学意义,它与被称为奇异吸引
子的离奇分形形状相联系。蝴蝶效应表明,奇异吸引子上的详细运
动不可预先确定,但这并末改变它是吸引子这个事实。设想一下如
果把一个乒乓球抛进波涛汹涌的大海,无论你从空中向下丢球,还
是从水下让球向上浮,球都会向海面运动。一旦到了海面之后,它
就在起伏的波浪中经历一个很复杂的运动路径,但不管这路径多
么复杂,球仍然留在海面上或至少很接近海面。在这一图景里,海
面是吸引子。因此,尽管有混沌,不论出发点可能是什么,系统最终
将很接近它的吸引子。
--
╔═══════════════════╗
║★★★★★友谊第一 比赛第二★★★★★║
╚═══════════════════╝
※ 来源:.哈工大紫丁香 bbs.hit.edu.cn [FROM: 202.118.229.92]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:2.652毫秒