Physics 版 (精华区)

发信人: zjliu (Robusting), 信区: Physics
标  题: uncertainty principle is untenable (zz)
发信站: 哈工大紫丁香 (Thu Dec 19 15:18:43 2002) , 转信

发信人: chentong (赖着不死在痞子堡), 信区: Physics
标  题: uncertainty principle is untenable (zz)
发信站: 南京大学小百合站 (Thu Dec 19 01:49:20 2002)

今天信箱里收到一封信,估计我们全系教授跟研究生都有吧

please reply to hdgbyi@public.guangzhou.gd.cn
or abdgong@hotmail.com,
please visit http://www.eqndb.com/contrib/uncertainty.html
thank you.




UNCERTAINTY  PRINCIPLE

IS

UNTENABLE



By reanalysing the experiment of Heisenberg Gamma-Ray Microscope and one of id

标  题: uncertainty principle is untenable (zz)
发信站: 南京大学小百合站 (Thu Dec 19 01:49:20 2002)

今天信箱里收到一封信,估计我们全系教授跟研究生都有吧

please reply to hdgbyi@public.guangzhou.gd.cn
or abdgong@hotmail.com,
please visit http://www.eqndb.com/contrib/uncertainty.html
thank you.




UNCERTAINTY  PRINCIPLE

IS

UNTENABLE



By reanalysing the experiment of Heisenberg Gamma-Ray Microscope and one of id

 the picture below or AIP page: http://www.aip.org/history/heisenberg/p08b.htm

). The circular lens forms a cone of angle 2A from the electron. The electron
is then illuminated from the left by gamma rays--high energy light which has t

he shortest wavelength. These yield the highest resolution, for according to a

 principle of wave optics, the microscope can resolve (that is, "see" or disti

nguish) objects to a size of dx, which is related to and to the wavelength L o

f the gamma ray, by the expression:

dx = L/(2sinA)                                   (1)

However, in quantum mechanics, where a light wave can act like a particle, a g

amma ray striking an electron gives it a kick. At the moment the light is diff

racted by the electron into the microscope lens, the electron is thrust to the

 right. To be observed by the microscope, the gamma ray must be scattered into

 any angle within the cone of angle 2A. In quantum mechanics, the gamma ray ca

rries momentum, as if it were a particle. The total momentum p is related to t

he wavelength by the formula

 p = h / L, where h is Planck's constant.               (2)

In the extreme case of diffraction of the gamma ray to the right edge of the l

ens, the total momentum in the x direction would be the sum of the electron's
 the picture below or AIP page: http://www.aip.org/history/heisenberg/p08b.htm

). The circular lens forms a cone of angle 2A from the electron. The electron
is then illuminated from the left by gamma rays--high energy light which has t

he shortest wavelength. These yield the highest resolution, for according to a

 principle of wave optics, the microscope can resolve (that is, "see" or disti

nguish) objects to a size of dx, which is related to and to the wavelength L o

f the gamma ray, by the expression:

dx = L/(2sinA)                                   (1)

However, in quantum mechanics, where a light wave can act like a particle, a g

amma ray striking an electron gives it a kick. At the moment the light is diff

racted by the electron into the microscope lens, the electron is thrust to the

 right. To be observed by the microscope, the gamma ray must be scattered into

 any angle within the cone of angle 2A. In quantum mechanics, the gamma ray ca

rries momentum, as if it were a particle. The total momentum p is related to t

he wavelength by the formula

 p = h / L, where h is Planck's constant.               (2)

In the extreme case of diffraction of the gamma ray to the right edge of the l

ens, the total momentum in the x direction would be the sum of the electron's
P''x - P'x = dPx ~ 2h sinA / L                     (4)

Since dx = L/(2 sinA), we obtain a reciprocal relationship between the minimum

 uncertainty in the measured position,dx, of the electron along the x axis and

 the uncertainty in its momentum, dPx, in the x direction:

dPx ~ h / dx    or   dPx dx ~ h.               (5)

For more than minimum uncertainty, the "greater than" sign may added.

Except for the factor of 4pi and an equal sign, this is Heisenberg's uncertain

ty relation for the simultaneous measurement of the position and momentum of a

n object

    .

Reanalysis

To be seen by the microscope, the gamma ray must be scattered into any angle w

ithin the cone of angle 2A.

The microscope can resolve (that is, "see" or distinguish) objects to a size o

P''x - P'x = dPx ~ 2h sinA / L                     (4)

Since dx = L/(2 sinA), we obtain a reciprocal relationship between the minimum

 uncertainty in the measured position,dx, of the electron along the x axis and

 the uncertainty in its momentum, dPx, in the x direction:

dPx ~ h / dx    or   dPx dx ~ h.               (5)

For more than minimum uncertainty, the "greater than" sign may added.

Except for the factor of 4pi and an equal sign, this is Heisenberg's uncertain

ty relation for the simultaneous measurement of the position and momentum of a

n object

    .

Reanalysis

To be seen by the microscope, the gamma ray must be scattered into any angle w

ithin the cone of angle 2A.

The microscope can resolve (that is, "see" or distinguish) objects to a size o

be seen by microscope

To be seen by the microscope, the gamma ray must be scattered into any angle w

ithin the cone of angle 2A, so we can measure the

momentum of the electron.

dPx is the momentum's uncertain quantity of the electron which can be seen by
microscope.

What relates to dx is the electron which the size is smaller than the

resolving limit .The electron is in the range dx, it can not be seen by the mi

croscope, so its position is uncertain.

What relates to dPx is the electron which the size is larger than or equal to
the resolving limit .The electron is not in the range dx, it can be seen by th

e microscope, so its position is certain.

Therefore, the electron which relate to dx and dPx respectively is not the sam

e.

be seen by microscope

To be seen by the microscope, the gamma ray must be scattered into any angle w

ithin the cone of angle 2A, so we can measure the

momentum of the electron.

dPx is the momentum's uncertain quantity of the electron which can be seen by
microscope.

What relates to dx is the electron which the size is smaller than the

resolving limit .The electron is in the range dx, it can not be seen by the mi

croscope, so its position is uncertain.

What relates to dPx is the electron which the size is larger than or equal to
the resolving limit .The electron is not in the range dx, it can be seen by th

e microscope, so its position is certain.

Therefore, the electron which relate to dx and dPx respectively is not the sam

e.

What we can see is the electron which the size is larger than or equal to the
resolving limit dx and has certain position, dx = 0..

Quantum mechanics does not relate to the size of the object. but on the Experi

ment Of Heisenberg Gamma-Ray Microscope, the using of the microscope must rela

te to the size of the object, the size of the object which can be seen by the
microscope must be larger than or equal to the resolving limit dx of the micro

scope, thus it does not exist alleged the uncertain quantity of the electron's

 position dx.

To be seen by the microscope, none but the size of the electron is larger than

 or equal to the resolving limit dx, the gamma ray which diffracted by the ele

ctron can be scattered into any angle within the cone of angle 2A, we can meas

ure the momentum of the electron.

What we can see is the electron which has certain position, dx = 0, so that no

ne but dx = 0,we can measure the momentum of the electron.

In Quantum mechanics, the momentum of the electron can be measured accurately
when we measure the momentum of the electron only, therefore, we can gained dP

x = 0.

What we can see is the electron which the size is larger than or equal to the
resolving limit dx and has certain position, dx = 0..

Quantum mechanics does not relate to the size of the object. but on the Experi

ment Of Heisenberg Gamma-Ray Microscope, the using of the microscope must rela

te to the size of the object, the size of the object which can be seen by the
microscope must be larger than or equal to the resolving limit dx of the micro

scope, thus it does not exist alleged the uncertain quantity of the electron's

 position dx.

To be seen by the microscope, none but the size of the electron is larger than

 or equal to the resolving limit dx, the gamma ray which diffracted by the ele

ctron can be scattered into any angle within the cone of angle 2A, we can meas

ure the momentum of the electron.

What we can see is the electron which has certain position, dx = 0, so that no

ne but dx = 0,we can measure the momentum of the electron.

In Quantum mechanics, the momentum of the electron can be measured accurately
when we measure the momentum of the electron only, therefore, we can gained dP

x = 0.

Therefore ,

dPx dx =0.                                     (6)





Ideal experiment 2

Experiment of single slit diffraction



Supposing a particle moves in Y direction originally and then passes a slit wi

th width dx . So the uncertain quantity of the particle position in X directio

n is dx (see the picture below) , and interference occurs at the back slit . A

ccording to Wave Optics , the angle where No.1 min of interference pattern is
, can be calculated by following formula :

sinA=L/2dx                                     (1)

Therefore ,

dPx dx =0.                                     (6)





Ideal experiment 2

Experiment of single slit diffraction



Supposing a particle moves in Y direction originally and then passes a slit wi

th width dx . So the uncertain quantity of the particle position in X directio

n is dx (see the picture below) , and interference occurs at the back slit . A

ccording to Wave Optics , the angle where No.1 min of interference pattern is
, can be calculated by following formula :

sinA=L/2dx                                     (1)

and

L=h/p          where h is Planck’s constant.       (2)

So uncertainty principle can be obtained

dPx dx ~ h                                    (5)



Reanalysis

According to Newton first law , if the external force at the X direction does
not affect particle ,the particle will keep the uniform straight line Motion S

tate or Static State , and the motion at the Y direction unchangeable .Therefo

re , we can lead its position in the slit form its starting point .

The particle can have the certain position in the slit, and the uncertain quan

tity of the position dx =0 .

According to Newton first law , if the external force at the X direction does
not affect particle,and the original motion at the Y direction is unchangeable

and

L=h/p          where h is Planck’s constant.       (2)

So uncertainty principle can be obtained

dPx dx ~ h                                    (5)



Reanalysis

According to Newton first law , if the external force at the X direction does
not affect particle ,the particle will keep the uniform straight line Motion S

tate or Static State , and the motion at the Y direction unchangeable .Therefo

re , we can lead its position in the slit form its starting point .

The particle can have the certain position in the slit, and the uncertain quan

tity of the position dx =0 .

According to Newton first law , if the external force at the X direction does
not affect particle,and the original motion at the Y direction is unchangeable

标  题: Re: uncertainty principle is untenable (zz)
发信站: 南京大学小百合站 (Thu Dec 19 07:29:12 2002)

这人根本就不明白量子力学中对物理量的统计解释,别跟这些fatuous的人计较。

【 在 chentong 的大作中提到: 】
: 今天信箱里收到一封信,估计我们全系教授跟研究生都有吧
:
: please reply to hdgbyi@public.guangzhou.gd.cn
: or abdgong@hotmail.com,
: please visit http://www.eqndb.com/contrib/uncertainty.html
: thank you.
:
:
:
:
: UNCERTAINTY  PRINCIPLE
:
: IS
:
: UNTENABLE
:
:
:
: By reanalysing the experiment of Heisenberg Gamma-Ray Microscope and one o..

: eal experiment from which uncertainty principle is derived , it is found t..

: (以下引言省略...)

--
http://bbs.nju.edu.cn/showfile?name=1038933726大眼猫猫.jpg
※ 来源:.南京大学小百合站 http://bbs.nju.edu.cn [FROM: 131.211.231.15]




--

※ 来源:.哈工大紫丁香 http://bbs.hit.edu.cn [FROM: 202.118.229.86]
[百宝箱] [返回首页] [上级目录] [根目录] [返回顶部] [刷新] [返回]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:207.835毫秒