Physics 版 (精华区)

发信人: zjliu (秋天的萝卜), 信区: Physics
标  题: HOW to BECOME a good theoretical physicis
发信站: 哈工大紫丁香 (Thu Nov 20 17:00:10 2003), 站内信件



From:  http://www.phys.uu.nl/~thooft/theorist.html



HOW to BECOME a GOOD THEORETICAL PHYSICIST

by  Gerard 't Hooft

This is a web site (still under construction, at the very initial stage) for y

oung students - and anyone else - who are (like me) thrilled by the challenges

 posed by real science, and who are - like me - determined to use their brains

 to discover new things about the physical world that we are living in.  In sh

ort, it is for all those who decided to study theoretical physics, in their ow

n time.

It so often happens that I receive mail - well-intended but totally useless -

by amateur physicists who believe to have solved the world. They believe this,

 only because they understand totally nothing about the real way  problems are

 solved in Modern Physics. If you really want to contribute to our theoretical

 understanding of physical laws - and it is an exciting experience if you succ

eed! - there are many things you need to know. First of all, be serious about

it. All necessary science courses are taught at Universities, so, naturally, t

he first thing you should do is have yourself admitted at a University and abs

orb everything you can. But what if you are still young, at School, and before

 being admitted at a University, you have to endure the childish anecdotes tha

t they call science there? What if you are older, and you are not at all looki

ng forward to join those noisy crowds of young students ?

It should be possible, these days, to collect all knowledge you need from the

internet. Problem then is, there is so much junk on the internet. Is it possib

le to weed out those very rare pages that may really be of use? I know exactly

 what should be taught to the beginning student. The names and topics of the a

bsolutely necessary lecture courses are easy to list, and this is what I have

done below. It is my intention to search on the web where the really useful pa

pers and books are, preferably downloadable as well. This way, the costs of be

coming a theoretical physicist should not exceed much the price of a computer

with internet connection, a printer, and lots of paper and pens. Unfortunately

, I still have to recommend to buy text books as well, but it is harder to adv

ise you here; perhaps in a future site. Let's first limit ourselves to the abs

olute minimum. The subjects listed below must be studied. Any omission will be

 punished: failure. Do get me right: you don't have to believe anything you re
ad
 on faith - check it. Try alternative approaches, as many as
you can. You will discover, time and again, that really what those guys did in

deed was the smartest thing possible. Amazing. the best of the texts come with

 exercises. Do them. find out that you can understand everything. Try to reach

 the stage that you discover the numerous misprints, tiny mistakes as well as

more important errors, and imagine how you would write those texts in a smarte

r way.

I can tell you of my own experiences. I had the extreme luck of having excelle

nt teachers around me. That helps one from running astray. It helped me all th

e way to earn a Nobel Prize. But I didn't have internet. I am going to try to

be your teacher. It is a formidable task. I am asking students, colleagues, te

achers to help me improve this site. It is presently set up only for those who

 wish to become theoretical physicists, not just ordinary ones, but the very b

est, those who are fully determined to earn their own Nobel Prize. If you are

more modest than that, well, finish those lousy schools first and follow the r

egular routes provided by educators and specialized -gogues who are so damn ca

refully chewing all those tiny portions before feeding them to you. This is a

site for ambitious people. I am sure that anyone can do this, if one is gifted

 with a certain amount of intelligence, interest and determination.

Theoretical Physics is like a sky scraper. It has solid foundations in element

ary mathematics and notions of classical (pre-20th century) physics. Don't thi

nk that pre-20th century physics is "irrelevant" since now we have so much mor

e. In those days, the solid foundations were laid of the knowledge that we enj

oy now.  Don't try to construct your sky scraper without first reconstructing

these foundations yourself. The first few floors of our skyscraper consist of

advanced mathematical formalisms that turn the Classical Physics theories into

 beauties of their own. They are needed if you want to go higher than that. So

, next come many of the other subjects listed below. Finally, if you are mad e

nough that you want to solve those tremendously perplexing problems of reconci

ling gravitational physics with the quantum world, you end up studying general

 relativity, superstring theory, M-theory, Calabi-Yao compactification and so

on. That's presently the top of the sky scraper. There are other peaks such as
 B
ose-Einstein condensation, fractional Hall effect, and more.
Also good for Nobel Prizes, as the past years have shown. A warning is called

for: even if you are extremely smart, you are still likely to get stuck somewh

ere. Surf the net yourself. Find more. Tell me about what you found. If this s

ite has been of any help to someone while preparing for  a University study, i

f this has motivated someone, helped someone along the way, and smoothened his

 or her path towards science, then I call this site successful. Please let me

know. Here is the list.

LIST OF SUBJECTS, IN LOGICAL ORDER (not everything has to be done in this orde

r, but this approximately indicates the logical coherence of the various subje

cts. Some notes are at a higher level than others) .

The .ps files are PostScript files. The program gsview is needed to read them.



(In this initial phase this page is still very incomplete!)

Languages: English is a prerequisite. If you haven't mastered it yet, learn it

. You must be able to read, write, speak and understand English, but you don't

 have to be perfect here. The lousy English used in this text is mine. That's

enough. All publications are in English. Note the importance of being able to

write in English. Sooner or later you will wish to publish your results. Peopl

e must be able to read and understand your stuff.

French, German, Spanish and Italian may be useful too, but they are not at all

 necessary. They are nowhere near the foundations of our sky-scraper, so don't

 worry. You do need the Greek alphabet. Greek letters are used a lot. Learn th

eir names, otherwise you make a fool of yourself when giving an oral presentat

ion. Now, here begins the serious stuff. Don't complain that it looks like bei

ng a lot. You won't get your Nobel Prize for free, and remember, all of this t

ogether takes our students at least 5 years of intense study.

Primary Mathematics.  Are you comfortable with numbers, adding, subtracting, s

quare roots, etc.?

Find many web courses on mathematics here! (more than you need)
    Natural numbers: 1, 2, 3, ...
    Integers: ..., -3, -2, -1, 0, 1, 2, ...
    Rational numbers (fractions): ? ? ?  23791 / 773  , ...
    Real numbers:  V2 = 1.4142135 ... , pi = 3.14159265... , e= 2.7182818...,

...
    Complex numbers: 2+3i,   eia = cos a + i sin a  , ... they are very import

ant!

    Set theory: open sets, compact spaces. Topology.
     You may be surprised that they do play a role indeed in physics!

Dave E. Joyce's trigonometry course

This is a must:  Prof. James Binney's course on complex numbers

(nearly) All of the above, here!(K.Kubota, Kentucky).  See also Chris Pope's l

ecture notes: Methods1-ch1 Methods1-ch2

The complex plane. Cauchy theorems and contour integration (G. Cain, Atlanta)


Algebraic equations. Approximation techniques. Series expansions: the Taylor s

eries. Solving equations with  complex numbers. Trigonometry: sin(2x)=2sin x c

os x, etc.

Infinitesimals. Differentiation. Differentiate basic functions (sin, cos, exp)

. Integration. Integrate basic functions, when possible. Differential equation

s. Linear equations.
The Fourier transformation. The use of complex numbers. Convergence of series.



The complex plane. Cauchy theorems and contour integration (now this is fun).


The Gamma function (enjoy studying its properties).
Gaussian integrals. Probability theory.

Partial differential equations. Dirichlet and Neumann boundary conditions.

    This is for starters. Some of these topics actually come as entire lecture

 courses. Much of those are essential ingredients of theories in Physics. You

don't have to finish it all before beginning with what follows next, but remem

ber to return to those subjects skipped during the first round.

Classical Mechanics:   Static mechanics (forces, tension); hydrostatics. Newto

n's Laws.
    The elliptical orbits of planets. The many-body system.
    The action principle. Hamilton's equations. The Lagrangean  (Don't skip -

extremely important!)
    The harmonic oscillator. The pendulum.
    Poisson's brackets.
    Wave equations. Liquids and gases. Viscosity. The Navier-Stokes equations.

 Viscosity and friction.

Lagrange and Hamilton equations

A.A. Louro's lecture Notes on Optics

Prof. Donald B. Melrose's Lecture notes on Thermodynamics
Optics: fractionand reflection. lenses and mirrors. The telescope and the micr

oscope. Introduction      to wave propagation. Doppler effect. Huijgens' princ

iple of wave superposition. Wave fronts.  Caustics.

Statistical Mechanics and Thermodynamics: The first, second and third laws of

thermodynamics.
    The Boltzmann distribution.
    The Carnot cycle. Entropy. Heat engines.
    Phase transitions. Thermodynamical models.
    The Ising Model (postpone techniques to solve the 2-dimensional Ising Mode

l to later).

    Planck's radiation law (as a prelude to Quantum Mechanics)

(Only some very basic things about) Electronics: electronic circuits. Ohm's la

w, capacitors, inductors, using complex numbers to calculate their effects. Tr

ansistors, diodes (how these actually work comes later).



Angus MacKinnon, Computational Physics
Also less crucial: Computational physics.

Maxwell Theory for electromagnetism. Maxwell's laws (homogeneous and inhomogen

eous)

Maxwell's laws in a medium. Boundaries. Solving the equations in:

W. .J. Spence, Electromagnetism
    vacuum and homogeneous medium (electromagnetic waves) in a box (wave guide

s);

    at boundaries (fraction and reflection)
    the vector potential and gauge invariance (extremely important).
    emission and absorption of em waves (antenna)
    light scattering against objects.

Introduction to QM and special relativity: Michael Fowler

An alternative Introduction

Niels Walet lecture course on QM (Manchester) lecture notes
(Non-relativistic) Quantum Mechanics. Bohr's atom.
    DeBroglie's relations (Energy-frequency, momentum-wave number)
    Schrödinger's equation (with electric potential and magnetic field).

    Ehrenfest's theorem.
    A particle in a box.
    The hydrogen atom, solved systematically. The Zeeman effect. Stark effect.


    The quantum harmonic oscillator.
    Operators: energy, momentum, angular momentum, creation and annihilation o

perators.
    Their commutation rules.
    Introduction to quantum mechanical scattering. The S-matrix. Radio-active

decay.


Atoms and molecules. Chemical binding. Orbitals. Atomic and molecular spectra.

 Emission and absorption of light. Quantum selection rules. Magnetic moments.



Solid State Physics: notes by Chetan Nayak (UCLA)
Solid State Physics. Crystals. Bragg reflection. Crystal groups. Dielectric an

d diamagnetic constants. Bloch spectra. Fermi level. Conductors, semiconductor

s and insulators. Specific heat. Electrons and holes. The transistor. Supracon

ductivity. Hall effect.

Nuclear Physics. Isotopes. Radio-activity. Fission and fusion. Droplet model.

Nuclear quantum numbers. Magic nuclei. Isospin. Yukawa theory.

Plasma physics: magneto-hydrodynamics, Alfvén waves.

See John Heinbockel, Virgunia.

See Chr. Pope: Methods2

G.'t Hooft: Lie groups, in Dutch + exercises
The special functions and polynomials (you don't have to know these by heart,

just understand the principles).
Advanced Mathematics. Group theory, and the linear representations of groups.

Lie group theory  Vectors and tensors.
More techniques to solve (partial) differential and integral equations.
Extremum principle and approximation techniques based on that.
Difference equations. Generating functions. Hilbert space.

Introduction to the functional integral.





Peter Dunsby's lecture course on tensors and special relativity

Michigan notes on (advanced) Quantum Mechanics
Special Relativity. The Lorentz transformation. Lorentz contraction, time dila

tation. E = mc2.  4-vectors and 4-tensors. Transformation rules for the Maxwel

l field. Relativistic Doppler effect.

Advanced Quantum Mechanics: Hilbert space. Atomic transitions. Emission and ab

sorption of light. Stimulated emission. Density matrix. Interpretation of QM.

The Bell inequalities. Towards relativistic QM: The Dirac equation, finestruct

ure. Electrons and positrons. BCS theory for supraconductivity. Quantum Hall e

ffect. Advanced scattering theory. Dispersion relations. Perturbation expansio

n. WKB approximation, Extremum principle. Bose-Einstein condensation. Superliq

uid helium.

More phenomenology: subatomic particles (mesons, baryons, photons, leptons, qu

arks) and cosmic rays; property of materials and chemistry; nuclear isotopes;

phase transitions; astrophysics (planetary system, stars, galaxies, red shifts

, supernovae); cosmology (cosmological models, inflationary universe theories,

 microwave background radiation); detection techniques.


Introduction + exercises by G. 't Hooft

Alternative: Sean M. Carrol's lecture notes on GR

Pierre van Baal's notes on QFT
General Relativity. The metric tensor. Space-time curvature. Einstein's gravit

y equation. The Schwarzschild black hole; Reissner-Nordström black hole. 
Peria
stron shift. Gravitational lensing. Cosmological models. Gravitational radiati

on.

Quantum Field Theory. Classical fields: Scalar , Dirac-spinor, Yang-Mills vect

or fields.

Interactions, perturbation expansion. Spontaneous symmetry breaking, Goldstone

 mode, Higgs mechanism.

Particles and fields: Fock space. Antiparticles. Feynman rules. The Gell-Mann-

Lévy sigma model for pions and nuclei. Loop diagrams. Unitarity, Causality an
d
 dispersion relations. Renormalization (Pauli-Villars; dimensional ren.) Quant

um gauge theory: Gauge fixing, Faddeev-Popov determinant, Slavnov identities,

BRST symmetry. The renormalization group. Asymptotic freedom.

Solitons, Skyrmions. Magnetic monopoles and instantons. Permanent quark confin

ement mechanism. The  1/N  expansion. Operator product expansion. Bethe-Salpet

er equation. Construction of the Standard Model. P and CP violation. The  CPT

 theorem. Spin and statistics connection. Supersymmetry.

Introduction + exercises

A more general site for superstrings
Superstring theory.



There are much more lecture notes to be found on the web here.

Books. As yet no advice. Find lists of useful textbooks here: Mathematics, Phy

sics (most of these are rather for amusement than being essential for understa

nding the World)

There already was some response. I thank: Rob van Linden.

 Back to homepage.

Last revised: September 9, 2003



--
╔═══════════════════╗
║★★★★★友谊第一  比赛第二★★★★★║
╚═══════════════════╝

※ 来源:.哈工大紫丁香 bbs.hit.edu.cn [FROM: 202.118.229.162]
[百宝箱] [返回首页] [上级目录] [根目录] [返回顶部] [刷新] [返回]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:209.205毫秒