Physics 版 (精华区)

发信人: cs (cs), 信区: Physics
标  题: 世纪发现之--相对论
发信站: 哈工大紫丁香 (2001年05月31日12:32:56 星期四), 站内信件

〖本文摘自《百年科学发现》〗
       世纪发现之·相对论
          ·黄烨·
  关于光的性质,还有很多谜,直到现在也无法用科学解释。光是怎样产生
的?在空间如何传播?光怎样从物质出现?光是什么,是物质、振动、还是纯
能?颜色是否为光必不可少?对于这许许多多的问题,科学已经作出了部分解
释,但归根结底,这些问题尚未解答。不过,20世纪初,在人们了解光、研究
光的过程中,带来了物理学的两场革命,这就是相对论和量子论。为建立这两
个理论体系,许多科学家都作出了重要贡献,他们都是一些杰出的物理学大师,
其中最为突出的是爱因斯坦。
爱因斯坦的学生时代
  艾伯特·爱因斯坦于1879年3月14日在德国小城乌尔姆出生,他的父母
都是犹太人。爱因斯坦有一个幸福的童年,他的父亲是位平静、温顺的好心人,
爱好文学和数学。他的母亲个性较强,喜爱音乐,并影响了爱因斯坦,爱因斯
坦从六岁起学小提琴,从此小提琴成为他的终生伴侣。爱因斯坦的父母对他有
着良好的影响和家庭教育,家中弥漫着自由的精神和祥和的气氛。
  和牛顿一样,爱因斯坦年幼时也未显出智力超群,相反,到了四岁多还不
会说话,家里人甚至担心他是个低能儿。六岁时他进入了国民学校,是一个十
分沉静的孩子,喜欢玩一些需要耐心和坚韧的游戏,例如用纸片搭房子。1888
年进入了中学后,学业也不突出,除了数学很好以外,其他功课都不怎么样,
尤其是拉丁文和希腊文,他对古典语言毫无兴趣。当时的德国学校必须接受宗
教教育,开始时爱因斯坦非常认真,但当他读了通俗的科学书籍后,认识到宗
教里有许多故事是不真实的。12岁时他放弃了对宗教的信仰,并对所有权威和
社会环境中的信念产生了怀疑,并发展成一种自由的思想。爱因斯坦发现周围
有一个巨大的自然世界,它离开人类独立存在,就象一个永恒的谜。他看到,
许多他非常尊敬和钦佩的人在专心从事这项事业时,找到了内心的自由和安宁。
于是,少年时代的爱因斯坦就选择了科学事业,希望掌握这个自然世界的奥秘,
而一旦选择了这一道路,就坚持不懈地走了下去,从来没有后悔过。
  1895年,爱因斯坦来到瑞士苏黎世,准备投考苏黎世的联邦工业大学,虽
然他的数学和物理考得很不错,但其他科目没有考好,学校校长推荐他去瑞士
的阿劳州立中学学习一年,以补齐功课。在阿劳州立中学的这段时光中使爱因
斯坦感到快乐,他尝到了瑞士自由的空气和阳光,并决心放弃德国国籍。
  1896年,爱因斯坦正式成为一个无国籍的人,并考进了联邦工业大学。大
学期间,爱因斯坦迷上了物理学,一方面,他阅读了德国著名物理学家基尔霍
夫、赫兹等人的著作,钻研了麦克斯韦的电磁理论和马赫的力学,并经常去理
论物理学教授的家中请教。另一方面,他的大部分时间是去物理实验室去做实
验,迷恋于直接观察和测量。1900年,爱因斯坦大学毕业。1901年,他获得了
瑞士国籍。1902年,在他的朋友格罗斯曼的帮助下,爱因斯坦终于在伯尔尼的
瑞士联邦专利局找到了一份稳定的工作--当技术员。
狭义相对论的创立
  早在16岁时,爱因斯坦就从书本上了解到光是以很快速度前进的电磁波,
他产生了一个想法,如果一个人以光的速度运动,他将看到一幅什么样的世界
景象呢?他将看不到前进的光,只能看到在空间里振荡着却停滞不前的电磁场。
这种事可能发生吗?
  与此相联系,他非常想探讨与光波有关的所谓以太的问题。以太这个名词
源于希腊,用以代表组成天上物体的基本元素。17世纪,笛卡尔首次将它引入
科学,作为传播光的媒质。其后,惠更斯进一步发展了以太学说,认为荷载光
波的媒介物是以太,它应该充满包括真空在内的全部空间,并能渗透到通常的
物质中。与惠更斯的看法不同,牛顿提出了光的微粒说。牛顿认为,发光体发
射出的是以直线运动的微粒粒子流,粒子流冲击视网膜就引起视觉。18世纪牛
顿的微粒说占了上风,然而到了19世纪,却是波动说占了绝对优势,以太的学
说也因此大大发展。当时的看法是,波的传播要依赖于媒质,因为光可以在真
空中传播,传播光波的媒质是充满整个空间的以太,也叫光以太。与此同时,
电磁学得到了蓬勃发展,经过麦克斯韦、赫兹等人的努力,形成了成熟的电磁
现象的动力学理论--电动力学,并从理论与实践上将光和电磁现象统一起来,
认为光就是一定频率范围内的电磁波,从而将光的波动理论与电磁理论统一起
来。以太不仅是光波的载体,也成了电磁场的载体。直到19世纪末,人们企图
寻找以太,然而从未在实验中发现以太。
  但是,电动力学遇到了一个重大的问题,就是与牛顿力学所遵从的相对性
原理不一致。关于相对性原理的思想,早在伽利略和牛顿时期就已经有了。电
磁学的发展最初也是纳入牛顿力学的框架,但在解释运动物体的电磁过程时却
遇到了困难。按照麦克斯韦理论,真空中电磁波的速度,也就是光的速度是一
个恒量,然而按照牛顿力学的速度加法原理,不同惯性系的光速不同,这就出
现了一个问题:适用于力学的相对性原理是否适用于电磁学?例如,有两辆汽
车,一辆向你驶近,一辆驶离。你看到前一辆车的灯光向你靠近,后一辆车的
灯光远离。按照麦克斯韦的理论,这两种光的速度相同,汽车的速度在其中不
起作用。但根据伽利略理论,这两项的测量结果不同。向你驶来的车将发出的
光加速,即前车的光速=光速+车速;而驶离车的光速较慢,因为后车的光速=
光速-车速。麦克斯韦与伽利略关于速度的说法明显相悖。我们如何解决这一分
歧呢?
  19世纪理论物理学达到了巅峰状态,但其中也隐含着巨大的危机。海王星
的发现显示出牛顿力学无比强大的理论威力,电磁学与力学的统一使物理学显
示出一种形式上的完整,并被誉为"一座庄严雄伟的建筑体系和动人心弦的美丽
的庙堂"。在人们的心目中,古典物理学已经达到了近乎完美的程度。德国著名
的物理学家普朗克年轻时曾向他的老师表示要献身于理论物理学,老师劝他说:
"年轻人,物理学是一门已经完成了的科学,不会再有多大的发展了,将一生献
给这门学科,太可惜了。"
  爱因斯坦似乎就是那个将构建崭新的物理学大厦的人。在伯尔尼专利局的
日子里,爱因斯坦广泛关注物理学界的前沿动态,在许多问题上深入思考,并
形成了自己独特的见解。在十年的探索过程中,爱因斯坦认真研究了麦克斯韦
电磁理论,特别是经过赫兹和洛伦兹发展和阐述的电动力学。爱因斯坦坚信电
磁理论是完全正确的,但是有一个问题使他不安,这就是绝对参照系以太的存
在。他阅读了许多著作发现,所有人试图证明以太存在的试验都是失败的。经
过研究爱因斯坦发现,除了作为绝对参照系和电磁场的荷载物外,以太在洛伦
兹理论中已经没有实际意义。于是他想到:以及绝对参照系是必要的吗?电磁
场一定要有荷载物吗?
  爱因斯坦喜欢阅读哲学著作,并从哲学中吸收思想营养,他相信世界的统
一性和逻辑的一致性。相对性原理已经在力学中被广泛证明,但在电动力学中
却无法成立,对于物理学这两个理论体系在逻辑上的不一致,爱因斯坦提出了
怀疑。他认为,相对论原理应该普遍成立,因此电磁理论对于各个惯性系应该
具有同样的形式,但在这里出现了光速的问题。光速是不变的量还是可变的量,
成为相对性原理是否普遍成立的首要问题。当时的物理学家一般都相信以太,
也就是相信存在着绝对参照系,这是受到牛顿的绝对空间概念的影响。19世纪
末,马赫在所著的《发展中的力学》中,批判了牛顿的绝对时空观,这给爱因
斯坦留下了深刻的印象。1905年5月的一天,爱因斯坦与一个朋友贝索讨论这
个已探索了十年的问题,贝索按照马赫主义的观点阐述了自己的看法,两人讨
论了很久。突然,爱因斯坦领悟到了什么,回到家经过反复思考,终于想明白
了问题。第二天,他又来到贝索家,说:谢谢你,我的问题解决了。原来爱因
斯坦想清楚了一件事:时间没有绝对的定义,时间与光信号的速度有一种不可
分割的联系。他找到了开锁的钥匙,经过五个星期的努力工作,爱因斯坦把狭
义相对论呈现在人们面前。
  1905年6月30日,德国《物理学年鉴》接受了爱因斯坦的论文《论动体
的电动力学》,在同年9月的该刊上发表。这篇论文是关于狭义相对论的第一篇
文章,它包含了狭义相对论的基本思想和基本内容。狭义相对论所根据的是两
条原理:相对性原理和光速不变原理。爱因斯坦解决问题的出发点,是他坚信
相对性原理。伽利略最早阐明过相对性原理的思想,但他没有对时间和空间给
出过明确的定义。牛顿建立力学体系时也讲了相对性思想,但又定义了绝对空
间、绝对时间和绝对运动,在这个问题上他是矛盾的。而爱因斯坦大大发展了
相对性原理,在他看来,根本不存在绝对静止的空间,同样不存在绝对同一的
时间,所有时间和空间都是和运动的物体联系在一起的。对于任何一个参照系
和坐标系,都只有属于这个参照系和坐标系的空间和时间。对于一切惯性系,
运用该参照系的空间和时间所表达的物理规律,它们的形式都是相同的,这就
是相对性原理,严格地说是狭义的相对性原理。在这篇文章中,爱因斯坦没有
多讨论将光速不变作为基本原理的根据,他提出光速不变是一个大胆的假设,
是从电磁理论和相对性原理的要求而提出来的。这篇文章是爱因斯坦多年来思
考以太与电动力学问题的结果,他从同时的相对性这一点作为突破口,建立了
全新的时间和空间理论,并在新的时空理论基础上给动体的电动力学以完整的
形式,以太不再是必要的,以太漂流是不存在的。
  什么是同时性的相对性?不同地方的两个事件我们何以知道它是同时发生
的呢?一般来说,我们会通过信号来确认。为了得知异地事件的同时性我们就
得知道信号的传递速度,但如何没出这一速度呢?我们必须测出两地的空间距
离以及信号传递所需的时间,空间距离的测量很简单,麻烦在于测量时间,我
们必须假定两地各有一只已经对好了的钟,从两个钟的读数可以知道信号传播
的时间。但我们如何知道异地的钟对好了呢?答案是还需要一种信号。这个信
号能否将钟对好?如果按照先前的思路,它又需要一种新信号,这样无穷后退,
异地的同时性实际上无法确认。不过有一点是明确的,同时性必与一种信号相
联系,否则我们说这两件事同时发生是没有意义的。
  光信号可能是用来对时钟最合适的信号,但光速不是无限大,这样就产生
一个新奇的结论,对于静止的观察者同时的两件事,对于运动的观察者就不是
同时的。我们设想一个高速运行的列车,它的速度接近光速。列车通过站台时,
甲站在站台上,有两道闪电在甲眼前闪过,一道在火车前端,一道在后端,并
在火车两端及平台的相应部位留下痕迹,通过测量,甲与列车两端的间距相等,
得出的结论是,甲是同时看到两道闪电的。因此对甲来说,收到的两个光信号
在同一时间间隔内传播同样的距离,并同时到达他所在位置,这两起事件必然
在同一时间发生,它们是同时的。但对于在列车内部正中央的乙,情况则不同,
因为乙与高速运行的列车一同运动,因此他会先截取向着他传播的前端信号,
然后收到从后端传来的光信号。对乙来说,这两起事件是不同时的。也就是说,
同时性不是绝对的,而取决于观察者的运动状态。这一结论否定了牛顿力学中
引以为基础的绝对时间和绝对空间框架。
  相对论认为,光速在所有惯性参考系中不变,它是物体运动的最大速度。
由于相对论效应,运动物体的长度会变短,运动物体的时间膨胀。但由于日常
生活中所遇到的问题,运动速度都是很低的(与光速相比),看不出相对论效应。
  爱因斯坦在时空观的彻底变革的基础上建立了相对论力学,指出质量随着
速度的增加而增加,当速度接近光速时,质量趋于无穷大。他并且给出了著名
的质能关系式:E=mc2,质能关系式对后来发展的原子能事业起到了指导作用。
广义相对论的建立
  1905年,爱因斯坦发表了关于狭义相对论的第一篇文章后,并没有立即引
起很大的反响。但是德国物理学的权威人士普朗克注意到了他的文章,认为爱
因斯坦的工作可以与哥白尼相媲美,正是由于普朗克的推动,相对论很快成为
人们研究和讨论的课题,爱因斯坦也受到了学术界的注意。
  1907年,爱因斯坦听从友人的建议,提交了那篇著名的论文申请联邦工业
大学的编外讲师职位,但得到的答复是论文无法理解。虽然在德国物理学界爱
因斯坦已经很有名气,但在瑞士,他却得不到一个大学的教职,许多有名望的
人开始为他鸣不平,1908年,爱因斯坦终于得到了编外讲师的职位,并在第二
年当上了副教授。1912年,爱因斯坦当上了教授,1913年,应普朗克之邀担任
新成立的威廉皇帝物理研究所所长和柏林大学教授。
  在此期间,爱因斯坦在考虑将已经建立的相对论推广,对于他来说,有两
个问题使他不安。第一个是引力问题,狭义相对论对于力学、热力学和电动力
学的物理规律是正确的,但是它不能解释引力问题。牛顿的引力理论是超距的,
两个物体之间的引力作用在瞬间传递,即以无穷大的速度传递,这与相对论依
据的场的观点和极限的光速冲突。第二个是非惯性系问题,狭义相对论与以前
的物理学规律一样,都只适用于惯性系。但事实上却很难找到真正的惯性系。
从逻辑上说,一切自然规律不应该局限于惯性系,必须考虑非惯性系。狭义相
对论很难解释所谓的双生了佯谬,该佯谬说的是,有一对孪生兄弟,哥在宇宙
飞船上以接近光速的速度做宇宙航行,根据相对论效应,高速运动的时钟变慢,
等哥哥回来,弟弟已经变得很老了,因为地球上已经经历了几十年。而按照相
对性原理,飞船相对于地球高速运动,地球相对于飞船也高速运动,弟弟看哥
哥变年轻了,哥哥看弟弟也应该年轻了。这个问题简直没法回答。实际上,狭
义相对论只处理匀速直线运动,而哥哥要回来必须经过一个变速运动过程,这
是相对论无法处理的。正在人们忙于理解相对狭义相对论时,爱因斯坦正在接
受完成广义相对论。
  1907年,爱因斯坦撰写了关于狭义相对论的长篇文章《关于相对性原理和
由此得出的结论》,在这篇文章中爱因斯坦第一次提到了等效原理,此后,爱因
斯坦关于等效原理的思想又不断发展。他以惯性质量和引力质量成正比的自然
规律作为等效原理的根据,提出在无限小的体积中均匀的引力场完全可以代替
加速运动的参照系。爱因斯坦并且提出了封闭箱的说法:在一封闭箱中的观察
者,不管用什么方法也无法确定他究竟是静止于一个引力场中,还是处在没有
引力场却在作加速运动的空间中,这是解释等效原理最常用的说法,而惯性质
量与引力质量相等是等效原理一个自然的推论。
  1915年11月,爱因斯坦先后向普鲁士科学院提交了四篇论文,在这四篇
论文中,他提出了新的看法,证明了水星近日点的进动,并给出了正确的引力
场方程。至此,广义相对论的基本问题都解决了,广义相对论诞生了。1916年,
爱因斯坦完成了长篇论文《广义相对论的基础》,在这篇文章中,爱因斯坦首先
将以前适用于惯性系的相对论称为狭义相对论,将只对于惯性系物理规律同样
成立的原理称为狭义相对性原理,并进一步表述了广义相对性原理:物理学的
定律必须对于无论哪种方式运动着的参照系都成立。
  爱因斯坦的广义相对论认为,由于有物质的存在,空间和时间会发生弯曲,
而引力场实际上是一个弯曲的时空。爱因斯坦用太阳引力使空间弯曲的理论,
很好地解释了水星近日点进动中一直无法解释的43秒。广义相对论的第二大预
言是引力红移,即在强引力场中光谱向红端移动,20年代,天文学家在天文观
测中证实了这一点。广义相对论的第三大预言是引力场使光线偏转,。最靠近地
球的大引力场是太阳引力场,爱因斯坦预言,遥远的星光如果掠过太阳表面将
会发生一点七秒的偏转。1919年,在英国天文学家爱丁顿的鼓动下,英国派出
了两支远征队分赴两地观察日全食,经过认真的研究得出最后的结论是:星光
在太阳附近的确发生了一点七秒的偏转。英国皇家学会和皇家天文学会正式宣
读了观测报告,确认广义相对论的结论是正确的。会上,著名物理学家、皇家
学会会长汤姆孙说:"这是自从牛顿时代以来所取得的关于万有引力理论的最重
大的成果","爱因斯坦的相对论是人类思想最伟大的成果之一"。爱因斯坦成了
新闻人物,他在1916年写了一本通俗介绍相对认的书《狭义相对论与广义相对
论浅说》,到1922年已经再版了40次,还被译成了十几种文字,广为流传。
相对论的意义
  狭义相对论和广义相对论建立以来,已经过去了很长时间,它经受住了实
践和历史的考验,是人们普遍承认的真理。相对论对于现代物理学的发展和现
代人类思相的发展都有巨大的影响。  相对论从逻辑思想上统一了经典物理
学,使经典物理学成为一个完美的科学体系。狭义相对论在狭义相对性原理的
基础上统一了牛顿力学和麦克斯韦电动力学两个体系,指出它们都服从狭义相
对性原理,都是对洛伦兹变换协变的,牛顿力学只不过是物体在低速运动下很
好的近似规律。广义相对论又在广义协变的基础上,通过等效原理,建立了局
域惯性长与普遍参照系数之间的关系,得到了所有物理规律的广义协变形式,
并建立了广义协变的引力理论,而牛顿引力理论只是它的一级近似。这就从根
本上解决了以前物理学只限于惯性系数的问题,从逻辑上得到了合理的安排。
相对论严格地考察了时间、空间、物质和运动这些物理学的基本概念,给出了
科学而系统的时空观和物质观,从而使物理学在逻辑上成为完美的科学体系。
  狭义相对论给出了物体在高速运动下的运动规律,并提示了质量与能量相
当,给出了质能关系式。这两项成果对低速运动的宏观物体并不明显,但在研
究微观粒子时却显示了极端的重要性。因为微观粒子的运动速度一般都比较快,
有的接近甚至达到光速,所以粒子的物理学离不开相对论。质能关系式不仅为
量子理论的建立和发展创造了必要的条件,而且为原子核物理学的发展和应用
提供了根据。
  广义相对论建立了完善的引力理论,而引力理论主要涉及的是天体。到现
在,相对论宇宙学进一步发展,而引力波物理、致密天体物理和黑洞物理这些
属于相对论天体物理学的分支学科都有一定的进展,吸引了许多科学家进行研
究。
  一位法国物理学家曾经这样评价爱因斯坦:"在我们这一时代的物理学家
中,爱因斯坦将位于最前列。他现在是、将来也还是人类宇宙中最有光辉的巨
星之一","按照我的看法,他也许比牛顿更伟大,因为他对于科学的贡献,更
加深入地进入了人类思想基本要领的结构中。" #

--
※ 来源:·哈工大紫丁香 bbs.hit.edu.cn·[FROM: 202.118.229.93]
[百宝箱] [返回首页] [上级目录] [根目录] [返回顶部] [刷新] [返回]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:207.620毫秒