Science 版 (精华区)

发信人: emacs (In the Name of Love), 信区: Science
标  题: 《阿基米德的报复》第六章  麦比乌斯分子
发信站: 哈工大紫丁香 (2002年07月31日18:09:34 星期三), 站内信件

第六章  麦比乌斯分子




  数学家们吐露,


  麦比乌斯带只有单面,

  如果你要将它分成两半,

  你将会感到十分可笑,

  因为分开后还是一条带。

  ——无名氏


  数学不仅可以在最宏大的规模上帮助进行形状设计,如3层半楼层高的复活
节彩蛋,而且还可以在微小的范围内帮助设计。本章将叙述美国博尔德市科罗拉
多大学的戴维·沃尔巴及其同事们如何在奇特的麦比乌斯带中合成分子的故事。

  神秘的麦比乌斯带是数学家们的宠物。你可以用一条窄纸条制作麦比乌斯带,
例如取一条加法器用纸带,半扭转,再把纸带两端连接,形成一闭合环,就成为
麦比乌斯带。

  麦比乌斯带只有单边,也只有单面。如果你用一把漆刷沿着纸带方向刷漆,
那么你将发现,当漆刷回到起点时,它已漆满整个纸带的表面。如果你沿着纸带
的一面做一种魔术记号,那么你也会立即相信,纸带只有一个边。


  如果你沿着纸带方向把麦比乌斯带剪成两半,果然,就像五打行油诗所说的,
它仍然还是一条带子。


  1858年,法国巴黎的一家科学协会为数学方面的一篇最优秀论文颁了奖。在
这次竞赛提交的论文中,德国莱比锡市的数学家奥古斯特·费迪南德·麦比乌斯
“发现了”这种曲面,就是现在以他的名字命名的曲面。麦比乌斯仅用纯数学观
点论述了他的发现,例如,没有讨论自然界中存在着麦比乌斯带分子的可能性。

  的确麦比乌斯不会想到诸如麦比乌斯带分子存在的可能性,这是因为当时的
有机化学科学还处于萌芽阶段,人们即使对最简单的分子形状也一无所知,更不
用说对数学有意义的复杂分子了。在麦比乌斯发现的同时,德国波恩大学的奥古
斯特·凯库勒宣布他的发现:碳原子可以连接形成长链,它将成为有机化学的基
础。

  4年前,凯库勒在伦敦的公共马车上,首次在幻想中思考了碳链的问题。他
回忆说:“那是一个晴朗的夏夜,我乘坐末班公共马车回家,和往常一样坐在
‘车顶的’座位上,通过大城市中没有行人的街道,在平时,那是个充满活力的
城市。我陷入幻想,并且好像看见许多原子在我眼前欢跳……我常常看到两个较
小的原子如何联合形成偶原子,1个较大的原子如何环抱着两个较小的原子;还
有更大的原子如何抓住3个甚至4个较小的原子不放,同时,它们整体如何跳着眼
晕的舞蹈快速旋转着。我也看到较大的原子如何形成链子……无论如何,我也要
花些夜里的时间,把这些幻想中形成的形态轮廓写进论文中。”

  11年以后,1865年,凯库勒认识到碳链子可以环绕着旋转,形成环。而梦幻
又一次给他以灵感。“我坐着编写教科书,然而工作毫无进展,我的思维开了小
差。我把椅子转向取暖壁炉,并打起盹来。原子再次在我眼前欢跳。这时较小的
原子谨慎地呆在基底上。我的心灵眼睛通过这种重复景象而更加敏锐,现在可以
辨别出多种形体中较大的结构,长长地排列成行,有时还更紧密地拼接在一起;
整行迂回曲折像蛇一样运动。瞧!那是什么?有一条蛇咬住了它自己的尾巴,嘲
弄般地在我眼前快速旋转,仿佛一道闪电,把我惊醒了……当天晚上,我就推断
出假设的结论。”

  首先,凯库勒推导出苯的结构,它由6个碳原子和6个氢原子组成。凯库勒断
定,6个碳原子形成六角形,各带有一个氢原子与每个碳原子相连。


  自从凯库勒辨明苯的形状以来,120年内有机化学家们当然发现了更为复杂
的分子的形状,诸如双螺旋的脱氧核糖核酸分子。但只是在近些年,化学家们才
观察到形状呈麦比乌斯带的分子。


  麦比乌斯分子不是在自然界中发现的,而是由戴维·沃尔巴及其同事们在实
验室里合成的。开始时,他用形状像一架3级梯子的分子合成。(梯子的每级实
际上是一个碳-碳的双键,这里可以忽略掉。)然后使梯子环绕着弯曲,再把两
端连接,使其实际上形成一个环状物。


  环形物中一半仅仅是一条环形带,而在另一半,当它两端连接时,将半截扭
转,从而形成一条麦比乌斯带。


  麦比乌斯带分子与麦比乌斯纸带一样,都具有许多神秘的性能。如果3个碳
双健全部断开,那么分子仍然还是单个分子。碳双键的断开,相当于沿着纸带的
中线环绕着把麦比乌斯带分成两半。对于分子和纸带两者来说,结果都是单带,
只是其周长为原来的两倍。

  化学家们很早就已知道,两种化合物可以有同样的分子式(即由同样化学成
分严格地按同样比例组成的化合物),但却以性质不同的化学实体存在。如果同
样的化学成分以不同的方式或以不同的角度相互键合时,这种现象就可能发生。
然而,两种具有同样分子式的化合物,甚至具有同样的化学键,其在化学性质上
也可能不同。怎么会有这种可能呢?

  一门叫做拓扑学的数学分支学科可以解释这种现象。它是研究物体在不断发
生变形时其性质仍然保持不变的数学学科。设想某物体是由柔性橡胶制成。拓扑
学家想要知道,当物体受到推拉但不戳破或撕裂时,什么性质仍然保持不变。可
用麦比乌斯带这个实例形象地说明这种抽象概念。假设你有一条橡胶的麦比乌斯
带,你可以用一切可能的方法使它伸缩。不管你用多少种方法也都不能使它变形,
最后得到的形状总是只有单面。因此,只有单面的性质就是拓扑学家们所关心的
事。当一种形状能够连续变形成为另一种形状时,从拓扑学上看,两种形状被认
为是等价的,所以,不管把麦比乌斯带伸缩成什么形状,从拓扑学的定义来说,
它们也都是等价的。


  现在考虑两条麦比乌斯带,一条用橡胶带朝某一方向扭转而成,另一条也用
橡胶带但朝相反方向扭转制成。

  从拓扑学上看,这两条麦比乌斯带是否等价?它们不等价。两者都不可能变
形成为另一种形状。如果你从镜子里看这两条带子中的一条,那么你会看到,其
映像很像另一条带;两条带互成镜像。


  这里我必须停下来发表一项否认声明,以避免数学家们来信恶意攻击。数学
家们都是一群怪人,拓扑学家们都不把自己局限在三维空间之中。而在四维空间
中,他们却能证明,镜子里的麦比乌斯带可以互相转变。然而我仍将坚持把我们
的讨论限于三维之内,因为我们探究的主要对象分子的形状总是在三维中观察到
的。因此,我要重申,在三维中,镜像的麦比乌斯带从拓扑学来看是截然不同的。

  成分一样而且化学键相同的两种化学化合物为什么会有性质截然不同的实体,
关键在于从拓扑学上看,可能存在着截然不同的镜像。

  因为右手和左手都是众所周知的镜像,所以人们习惯地把与其镜像相反的物
体称为左手的或右手的。在一对镜像物中,究竟哪一个叫做像,是一个习惯问题。
这正如街道的右侧不存在绝对位置一样,它取决于你行走的方向。两种麦比乌斯
带已被人们称为右旋和左旋的麦比乌斯带,但是不必担心何者右旋,何者左旋。
分子也存在右旋和左旋形式,人们称它们为手性,它是从希腊词“手(Cheir)”
借用来的。

  右旋和左旋麦比乌斯带都是镜像形状的实例,从拓扑学来看,它们在性质上
是截然不同的,但有着等价的镜像形状。现以一简单图形为例,一个圆形是它本
身的镜像,显然,从拓扑学上看,圆形与它本身是等价的。

  另一个例子是字母R及其镜像Я。若用软橡胶制成图形R,那么可以用拓扑学
的变形方法把它变换成为它的镜像。


  可是,分子不是软橡胶制成的,物理的约束力防止它们以任何方式发生变形。
尽管如此,R形分子还是能够转变成为它的镜像,无须弯曲变形——的确根本不
需要弯曲。这次,如果把用硬塑料制成的字母图形R及其镜像Я放在桌子上,那
么,只要把它拿起来翻转,就能使其中一个变成另一个。

  这种变换由于物体始终保持其刚性,所以叫做刚性变换。

  许多有机分子都是刚性的手性分子:它与它的镜像在刚性上是截然不同的。
人体明显偏爱某种手征的手性分子。例如,大多数的蛋白质都是由左旋氨基酸和
右旋糖组成的。当手性分子在人体内合成时,只能产生具有所需手征的手性分子。

  但是,当诸如药物等手性分子在实验室内用非生物方法合成时,结果都是右
旋与左旋形式分子的对半混合。当病人服药时,由于难于除掉不是所需形式的分
子,所以服用的是混合物。一般说来,非所需形式的分子在生物学上是惰性的,
而且只是经过身体,无任何作用。有时还是有害的。60年代初期,就曾发生给妊
娠妇女

  服用擦里多米德药物事件。药物中的右旋分子具有所需的镇静药性,而左旋
分子却能造成新生儿畸形。

  英国伦敦皇家学院化学教授斯蒂芬·梅森在英国周刊《新科学家》发表的文
章中,注意到收入标准药物手册中的486种合成生产的手性药物,只有88种是由
所需的手征分子组成的。其余的398种全都是对半的混合物。梅森得出了结论:
“它们都是在特定环境(人体)中使用,某种手征会得到特别的偏爱。可是,效
果又会怎样呢?”

  当一位有机化学家分析一种新分子时,首先要做的事是试图确定分子是否刚
性的手性分子,即在刚性上与其镜像是否截然不同。这里可借助于拓扑学。从拓
扑学上看,如果分子与其镜像性质不同,那么它们在刚性上也是不同的,因为刚
性变换只能是许多通过拓扑学完成的变换中的一种。还以上面讨论过的R及其镜
像Я作为例子。在从一个变形成为另一个时,可以得到一种中间的形状Я,它具
有对称性,其左半是其右半的镜像。


  拓扑学家们知道,如果一种形状能够变形成为某种具有反射对称性的形状,
那么该形状本身就能够变形成为其镜像。这就意味着,如果化学家能够让分子获
得具有反射对称性的形状,那么,他就能消除分子的手性。

  这种见解往往证明是有用的。沃尔巴已经从三级梯形分子中合成出分子的麦
比乌斯带,他请我去直接观察从两级梯形分子中合成的类似方法。所得到的形状
是手性吗?如下图所示,由于它能变换成为具有反射对称性的形状,所以不是手
性的。

  可惜,这种解释对于三级麦比乌斯分子似乎不起作用。经过许多思考实验之
后,沃尔巴推测,好像它不可能变形成为具有反射对称性的形状。如果变形后已
经显示出反射对称性,那么他就会断定,三级麦比乌斯形状可以变形成为它的镜
像。可是,这样的逆叙正确吗?任何变形未能显示出反射对称性,是否意味着分
子本身就不能变形成为其镜像?

  毛病就出在答案太容易上。沃尔巴请我考虑两只橡胶手套,一只为右手的,
另一只则是左手的。


  手套显然都是镜像的,可是从拓扑学来看,它们等价吗?当然,手套在刚性
上是不等价的,因为如果我们像翻转字母R那样翻转两只手套中的一只来获得镜
像,那是行不通的。然而,如果我们把任何一只手套从里往外翻转,那么就能使
手套成为等价。


  (拓扑学家因而发现它自己处在一个奇特的位置上,既不能认为手套是右手
的,也不能认为是左手的。)在把手套从里往外翻转的过程中,手套在任何步骤
都不具有反射对称性。

  我们也许能够得出结论,手套是一个反例:某种形状在拓扑学上与其镜像等
价,但在其变形过程中却不具备反射对称性。这种结论可能是错误的。只是我们
没有让手套充分变形。如果我们使劲拽开手套,那么至少在理论上能够把手套变
形成为一个圆盘的形状,这时手套就具有反射对称性(沿任何直径方向都有反射
对称性)。


  以上讨论的要点是,沃尔巴在化学方面的一些研究已向拓扑学家提出一个重
要问题:如果某种形状在变形过程中不可能具备反射对称性,那么是否可以得出
结论,从拓扑学上看,形状本身与其镜像不等价呢?这是一个基本问题,但在数
学文献上,好像还没有人提出来过。

  这个问题整个都牵扯到一个重要的哲学问题:物理科学上的新概念是否常常
会启迪出数学上的新概念?或者反之?换句话说,何者在先,是物理科学,还是
数学?许多哲学家遇到过这个问题,这与众所周知的关于鸡和蛋何者在先的问题
一样,答案看来是不会令人满意的。

  在这两种情况下,人们所得出的结论,似乎不是一个不可置否的证据,而是
一个目的性的试验。一些步柏拉图后尘的专横数学家断言,他们的学科是与物理
学实际相脱离的。他们认为,即使没有可供计数的物体,数字也会存在。不大固
执的数学家们则承认,科学与数学是紧密相连的,但他们坚持数学在先。他们提
出群论作为证据,群论是数学的一门分支学科,在19世纪30年代诞生,它完全没
有物理学上的用途,只是最近才被粒子物理学家应用,以便用于研究过去20年内
发现的亚原子粒子集。

  但是,物理学家们则相信他们的学科在先,而且认为历史是站在他们一边。
例如伊萨克·牛顿创造了数学中著名的分支学科微积分,就是因为他当时需要一
种数学工具,用来分析极小的空间与时间间隔。而我认为,数学与科学都相得益
彰,才是惟一公正的结论,尽管这种判断既不鼓舞人心,也不增进知识。麦比乌
斯带的故事就是数学与物理科学之间错综复杂相互促进关系的一个很好的实例。
1858年的论文竞赛中提出的麦比乌斯带仅仅创立了纯数学,现在它在化学中发展
起来,而且已被化学家们熟练地运用,又为纯理论的数学家提出许多问题。

  你可以感到欣慰的是,麦比乌斯带不仅可以服务于化学家,而且也可以服务
于工业家。B.F.古德里奇公司已经获得麦比乌斯输送带的专利权。在普通输送
带中,带的一侧会有较多的磨损与撕裂。而在麦比乌斯输送带中,应力可分布到
“两侧”,从而可以延长其使用期一倍。



--
What a friend we have in EMACS,
  All our text-problems to halt!
What a privilege to keypress
  Control-meta-ESC-shift-alt!

※ 来源:·哈工大紫丁香 bbs.hit.edu.cn·[FROM: 天外飞仙]
[百宝箱] [返回首页] [上级目录] [根目录] [返回顶部] [刷新] [返回]
Powered by KBS BBS 2.0 (http://dev.kcn.cn)
页面执行时间:2.507毫秒